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Abstract

Recent research has shown considerable interest in collaborative training of deep ne-

ural networks utilizing edge devices. Two predominant architectural paradigms for this

training process include centrally orchestrated Federated Learning and fully decentralized

peer-to-peer learning. Edge devices, termed agents, harbor local deep neural network

models and distinct local datasets, composed of data collected specifically by each agent.

While peer-to-peer learning techniques have been extensively investigated assuming inde-

pendent and identically distributed (IID) data across agents, the learning efficacy signi-

ficantly diminishes under non-IID assumptions, resulting in reduced model accuracy and

slower convergence rates. The thesis aims to identify viable strategies for alleviating the

impact of non-IID data on the overall learning process and to devise novel methodologies

applicable in peer-to-peer deep learning contexts. These methodologies are subsequently

evaluated using realistic non-IID datasets to assess their efficacy and applicability. The

thesis will analyze autonomous personalized peer connection creation and present two

methods of improving the peer-to-peer learning process in non-IID environments. The

methods relate to improving peer-to-peer learning by enabling multi-task collaboration

between agents learning two distinct tasks, and improving agent’s local model perfor-

mance by a personalization technique. The results indicate a statistically significant

increase of 11.6% in the mean relative accuracy for the proposed multi-task technique,

and 16.9%-29.8% relative accuracy increase (depending on the topology) for the perso-

nalization technique. Presented methods can be used to enhance the performance and

scalability of peer-to-peer learning systems, and improve personalization resulting in gre-

ater model accuracy in diverse real-world scenarios.

Keywords: peer-to-peer, non-IID, machine learning, natural language processing,

personalization, multi-task
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Prošireni sažetak

Suradničko obučavanje dubokih neuronskih mreža na rubnim (mobilnim i ugradbe-

nim) uredajima izazvao je znatan interes u nedavnoj literaturi, pri čemu su istaknute

dvije vodeće paradigme: centralno savezno (eng. Federated Learning) i potpuno decen-

tralizirano učenje na istorazinskim rubnim uredajima. Rubni uredaji, nazvani agentima,

posjeduju lokalne modele dubokih neuronskih mreža i različite lokalne skupove poda-

taka. Iako su tehnike učenja istorazinskih agenata detaljno istražene pod pretpostavkom

identično distribuiranih i neovisnih podataka, njihova učinkovitost opada pod pretpos-

tavkom da su podaci neovisno i nejednako distribuirani (NND), što rezultira smanjenom

točnošću modela i sporijim konvergencijskim stopama. Stoga je cilj ovog istraživanja ra-

zviti postupke i metode za ublažavanje utjecaja NND podataka na ukupni proces učenja te

osmisliti nove metodologije primjenjive u kontekstu istorazinskog učenja medu agentima,

s fokusom na uporabu realističnih skupova podataka.

Decentralizirano učenje medu istorazinskim agentima je paradigma učenja koja se osla-

nja na razmjenu lokalnih modela medu agentima prateći neku mrežnu topologiju. Mrežna

topologija obično je unaprijed definirana, a putem nje su utvrdene veze izmedu agenata,

koje koriste za medusobnu komunikaciju. Tijekom komunikacije, agenti razmjenjuju samo

svoje lokalne modele, dok se lokalni podaci agenata nikada ne razmjenjuju. Primljeni mo-

deli susjednih agenata agregiraju se s lokalnim modelom na način da se izračuna prosjek

svih primljenih modela (u slučaju vǐse primljenih) zajedno s lokalnim modelom, stva-

rajući tako novi model. Alternativno, svaki primljeni model može se direktno agregirati

s lokalnim modelom te na taj način dobiti novi lokalni model. Ciklički proces u kojem

svaki agent najprije lokalno trenira svoj model na vlastitim lokalnim podacima, a zatim

razmjenjuje taj model s susjednim agentima, ponavlja se sve dok se ne postigne odredeni

kriterij zaustavljanja, obično vezan uz konvergenciju modela.

Heterogenost lokalnih skupova podataka medu agentima ima značajan utjecaj na

konačne vrijednosti parametara modela nakon lokalnog treniranja. Različite distribu-

cije, karakteristike i veličine podataka mogu rezultirati različitim lokalnim modelima, čak

i ako su agenti početno inicijalizirani s istim parametrima modela. Kada dode do razmjene

lokalnih modela medu različitim agentima, proces agregacije modela koji imaju značajne
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razlike u parametrima može rezultirati stvaranjem novog modela koji ima znatno slabije

performanse. Ovaj fenomen direktno utječe na stabilnost procesa učenja, brzinu kojom

modeli konvergiraju te na općenite sposobnosti generalizacije konačnih modela.

Ova disertacija pisana je prema takozvanom Skandinavskom modelu u sklopu kojeg

su objavljena tri znanstvena rada koja prikazuju originalni doprinos u području decentra-

liziranog istorazinskog učenja izmedu agenata.

Prvi rad prikazuje decentraliziranu varijantu istorazinskog učenja agenata s prilagod-

bom postojeće tehnike gossip averaging u kombinaciji s normalizacijskim slojevima koji

čine sastavni dio arhitekture modela. Ispitati će se učinkovitost Batch Normalization

(BN) slojeva u ublažavanju negativnog utjecaja NND podataka medu decentraliziranim

agentima. Uz to, uvesti će se i varijanta tehnike uranjenog zaustavljanja, koja u kombi-

naciji s BN slojevima, djeluje kao personalizacijska tehnika za fino podešavanje lokalnog

modela agenata. Predložena metoda biti će validirana kroz brojne simulacije koristeći

zadatak predikcije sljedeće riječi na korisničkim komentarima iz Reddit i STackOverflow

skupova podataka. Rezultati simulacija pokazuju da predložena metoda, u prosjeku,

postiže relativno povećanje točnosti izmedu 16.9%-29.8% u usporedbi s najboljim baznim

decentraliziranim pristupom učenja, u različitim mrežnim topologijama.

Drugi rad istražuje primjenu tehnike vǐsezadaćnog učenja za rješavanje dva zasebna

zadataka u obradi prirodnog jezika. Predstaviti će se nova metoda koji koristi transfor-

mer arhitekturu koja se sastoji samo od enkodera, kako bi se omogućila suradnja izmedu

agenata koji uče različite zadatke. Metoda će se evaluirati simuliranjem različitih sku-

pina agenata koji uče različite zadatke kako bi se ispitalo na koji način se može ostvariti

medusobna korisnost djeljenja modela izmedu svih agenata i na taj način ostvariti bolje

rezultate lokalnih modela. Evaluacije provedene u radu pokazale su da je suradnja medu

agentima, čak i kada agenti uče različite zadatke, može pobolǰsati lokalnu točnost modela

svih agenata, posebno kada su veze izmedu agenata pažljivo razmotrene i ograničene.

Vǐsezadaćna suradnja dovela je do statistički značajnog povećanja od 11.6% u prosječnoj

relativnoj točnosti u usporedbi s rezultatima baznih eksperimenata za pojedinačne za-

datke.

U trećem radu se istražuje autonomno uspostavljanje veza izmedu agenata tijekom de-

centraliziranog učenja u kontekstu NND skupova podataka medu agentima, u sintetičkim

i stvarnim okruženjima. Fokus je na evaluaciji učinkovitosti različitih metodologija u sce-
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narijima koji obuhvaćaju zadatke klasifikacije slika i obrade prirodnog jezika. Kroz eks-

perimente provedene u sintetičkim i realnim NND okruženjima, PANMGrad i PANMLoss

metode pokazale su se kao optimalna rješenja, pokazujući kako učinkovitost komunikacije

tako i otpornost na tendencije centralizacije.

Publikacije zajednički čine koherentno tijelo rada i doprinose shvaćanju procesa decen-

traliziranog učenja medu istorazinskim agentima u kontekstu heterogenih skupova poda-

taka. Jedan od radova analizira strategije za autonomno uspostavljanje komunikacijskih

veza izmedu agenata, dok se u druga dva rada predlažu nove metode temeljene na po-

bolǰsanju performansi učenja kroz vǐsezadaćno učenje ili personalizaciju lokalnih modela.

Iz navedenog proizlaze sljedeći znanstveni doprinosi:

1. Metoda uspostave veza i razmjene modela izmedu heterogenih agenata i različitih

ciljeva učenja,

2. Metoda treniranja zajedničkih slojeva modela za brzu konvergenciju u okruženju s

vǐse ciljeva učenja,

3. Metoda personalizacije modela istorazinskih agenta temeljena na normalizacijskim

slojevima

4. Evaluacija, usporedba i identifikacija optimalnih metoda za autonomno uspostav-

ljanje veza izmedu agenata nad sintetičkim i realističnim podacima,

5. Evaluacija korǐstenja normalizacijskih slojeva u postojećim decentraliziranim pris-

tupima radi pobolǰsanja konvergencije modela i točnosti nad realističnim podacima.

Ključne riječi: istorazinsko učenje, neovisno i nejednako distribuirani skupovi poda-

taka, strojno učenje, obrada prirodnog jezika, personalizacija, vǐsezadaćno učenje
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1. INTRODUCTION

The proliferation of interconnected edge devices, encompassing mobile phones, tablets,

and laptops, entails a wealth of valuable yet often personal data. While there are various

definitions of personal, private, and sensitive data, personal data generally encompasses

both sensitive and private information [48]. Throughout this dissertation, when refer-

ring to a user’s local data, it is assumed that this includes personal data, encompassing

both private and sensitive information. Advanced machine learning models can leverage

this data from edge devices to enhance user experience through intelligent recommender

systems, voice recognition, typing predictions, or elevating service quality in sectors like

finance, healthcare, and insurance. This trend has spurred a surge in research inter-

est towards harnessing the local data and computational capabilities of edge devices for

collaborative model training while ensuring robust privacy safeguards [40].

Two primary methodologies for collaborative training have emerged: Federated Learn-

ing (FL) [57] and peer-to-peer (P2P) learning [8]. Federated Learning orchestrates the

training of a shared model through a centralized process utilizing data from edge devices.

In contrast, P2P learning techniques rely on a predefined choreography followed by each

edge device, termed agents. Dispensing with the need for a central parameter server,

the P2P approach fosters a system more resilient to the challenges inherent in centralized

methodologies; nonetheless, it confronts additional issues such as synchronization between

agents.

An edge device encompasses any hardware unit equipped with memory, computational

capabilities, internet connectivity, and potentially valuable datasets suitable for model

training [57]. These components facilitate local model training on the device using its

local dataset. Collaborative learning aims to ensure data privacy by only sharing the

model with the outside world while keeping the local data private [57]. From hereafter,

we refer to an edge device as an agent. Each agent houses private local data, a machine

learning framework like TensorFlow [56] or PyTorch [66], and a pre-trained or randomly

initialized machine learning model (see Figure 1). The architectural design and parameters

of the model are typically established prior to the commencement of the learning process.
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Figure 1: Agent contains local data, a machine learning framework, and a model trained
by the ML framework.

1.1. Peer-to-peer learning

In its simplest form, peer-to-peer learning follows a cyclical process where all agents

initially conduct a set number of local model training iterations. This is succeeded by a

communication phase where agents exchange their local models with peers. The received

models are aggregated to form a new local model, which is then utilized in the subsequent

training phase. Figure 2 shows described cyclical process.

The efficacy of the peer-to-peer learning process hinges significantly upon the nature of

the local data accessible to agents. When the local data follows an identically distributed

and independent (IID) distribution, the learning process becomes more streamlined. In

this scenario, all agents train their local models on comparable data, resulting in models

with akin parameters. Subsequently, during the communication phase and exchange of

models between agents, the ensuing local models represent an enhancement over the

previous iteration of model parameters. This improvement is attributable to the likeness

in model parameters across agents induced by the similarity in their respective datasets.

Non-IID data, as observed in real-world scenarios, presents a more realistic and prevalent

challenge to the peer-to-peer learning process [93, 54]. This divergence from identically

distributed and independent data substantially impedes the learning processes of agents,

resulting in compromised performance outcomes.
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Figure 2: Synchronous peer-to-peer learning process [80].

1.1.1. Network topology

In a decentralized peer-to-peer system, agents engage in information exchange, repre-

sented by the transmission of model parameters, through connections established between

themselves. These connections are encapsulated within a communication graph:

G = (JNK, E,W ) (1)

where JNK = {1, ..., N} denotes the set of all nodes in the network, E ∈ JNK × JNK

represents the set of edges, and W ∈ RN×N constitutes a nonnegative weighted matrix.

The weight of an edge (i, j) ∈ E is denoted by Wij, following the convention Wij = 0

if (i, j) /∈ E or i = j. An agent i transmits messages solely to agent j if Wij > 0,

indicating that agent i communicates exclusively with neighbors (peers) within the set

Ni = {j : Wij > 0}, without awareness of other non-connected neighbors (Wij = 0) in

the network. When visualized, the communication graph G illustrates the connections

among all agents in the network.

Consider the following communication matrix, W1 ∈ R6×6, comprised of six agents,

each communicating with three neighbors:

3



W1 =



0 1 0 0 1 1

1 0 1 1 0 0

0 1 0 0 1 1

0 1 0 0 1 1

1 0 1 1 0 0

1 0 1 1 0 0


(2)

Column indices of matrix W1 correspond to sending agents, while the row indices cor-

respond to receiving agents. For the agent with index 0, denoted as Agent0, the sending

indices (column at index 0) are {0, 1, 0, 0, 1, 1}, indicating that Agent0 sends its message

to agents Agent1, Agent4 and Agent5. The row at index 0 shows that Agent0 receives

messages from agents Agent1, Agent4 and Agent5. This matrix example exemplifies an

undirected/symmetric communication graph, often utilized in various peer-to-peer learn-

ing methods [16, 17, 42, 87, 1, 94, 9, 45, 28, 51, 50, 82, 88]. Figure 3 visualizes the

connections from the W1 communication graph.

Figure 3: Visual communication representation of the W1 undirected communication
graph.

Conversely, a directed/asymmetric communication graph implies that an agent can

send messages to a set of neighbors but receive messages from a completely different

set of neighbors. In a directed graph, an agent has an in-neighbor if (i, j) ∈ E and

an out-neighbor if (j, i) ∈ E. The out-neighbor set represents the agents to which the

agent sends messages, while the in-neighbor set represents the agents from which messages

are received. Generally, the number of in-neighbors and out-neighbors is identical. The

following communication matrix W2 ∈ R6×6 illustrates connections between agents in a

directed communication scheme, where each agent maintains three neighbor connections.
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W2 =



0 1 0 1 1 0

1 0 0 1 1 0

1 1 0 0 0 1

1 0 1 0 0 1

0 1 1 0 0 1

0 0 1 1 1 0


(3)

Column indices of matrix W2 still correspond to sending agents, with Agent0 (column

at index 0) sending messages to agents Agent1, Agent2 and Agent3, and receiving messages

from agents Agent1, Agent3 and Agent4. It is true that Agent0 essentially communicates

with agents Agent1 and Agent3 in a undirected manner. However, this occurrence is

primarily attributable to the small number of overall agents relative to the number of

neighbor connections per agent. The W2 communication matrix is visually depicted in

Figure 4.

Figure 4: Visual communication representation of the W2 directed communication graph.

Network topology refers to the method of generating communication matrices accord-

ing to specific conditions and rules. In scientific literature, network topology is typically

predefined [17, 44, 50, 51, 82], whereby all connections between agents are established

in advance. However, recent research has begun exploring the possibility of autonomous

creation of neighbor connections [95, 96, 46, 49, 65]. The potential for dynamic and

autonomous creation of neighbor connections emerges as a more practical solution for

applications in a realistic and dynamic environment of decentralized agents. Several com-

mon network topologies are depicted in Figure 5. The number of in-out neighbors can

vary depending on the chosen topology. Ring, fully connected, or torus topologies inher-
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ently restrict customization of the number of neighbors. In a ring topology, each agent

has two neighbors in undirected communication and one neighbor in directed communi-

cation. Conversely, in a fully connected graph, there is no distinction between undirected

and directed communication, but the number of neighbors is fixed at N − 1 in a network

comprising N fully connected agents. Sparse networks afford each agent the flexibility to

determine the number of neighbors [16, 4, 30, 42, 87, 1, 6, 94, 9, 45, 28, 88].

Figure 5: Examples of most common network typologies in an undirected and directed
communication [78].

1.1.2. Synchronisation

Synchronization plays a pivotal role in decentralized systems, dictating the strategy

that each agent adheres to when communicating with its neighbors. In synchronous

systems, a synchronization barrier often halts the learning process of an agent while

all messages are exchanged. This approach may involve sending messages to all out-

neighbors and waiting for responses from all in-neighbors. As all agents must execute the

same steps, the learning process of each agent can only resume once all messages have

been exchanged between neighbors. Given that decentralized approaches do not entail

central authority overseeing the learning process, agents may opt to use a central clock for

synchronization purposes. Alternatively, the asynchronous time model [12] enables each

agent to independently track time with its own clock, ticking at a Poisson distribution

[6, 16, 94]. Considering all local clocks as independent and identically distributed (IID),
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they collectively function as a single global clock ticking at a rate of N Poisson processes,

awakening one or more network agents uniformly at random. This uniform clock proves

advantageous when two agents must awaken simultaneously to communicate.

Different approaches entail varying message content exchanged between agents; typi-

cally, an agent is required to send its message to all its out-neighbors and receive messages

from all its in-neighbors. A loss of a message during this phase can potentially halt the

overall learning process, as an agent may indefinitely await a message that never arrives.

Such a stalled agent could trigger a cascade effect, stalling all other agents in turn. This

phenomenon, which we termed synchronous undirected communication, is characterized

by a synchronization barrier where all messages are exchanged simultaneously [16, 17, 4,

42, 45, 28, 51, 82, 88]. However, an approach proposed by Assran et al. [4] aims to miti-

gate this issue by potentially delaying synchronization for a specific number of iterations,

allowing messages to be processed as they arrive. Similarly, an asynchronous approach

proposed by Guo et al. [28] enables agents to query which neighbors will participate

in the following communication step, thereby reducing the synchronization burden. If

an approach features a synchronization barrier but supports directed communication, we

term it as synchronous directed communication. Here, communication is directed, but

synchronization is still required, necessitating the reception of all in-neighbor messages be-

fore continuing the learning process [4, 30, 44]. Another scenario arises when two agents

communicate asynchronously without disrupting the learning process but still require

message exchange between them to occur in the same time interval. We term this case as

asynchronous undirected communication [16, 10, 11, 87, 1, 94, 9, 50]. Several approaches

modify the communication step to allow an agent to continue the training process and

process messages upon arrival. We term this as asynchronous directed communication.

Among the four, the most permissive approach is asynchronous directed communication

[6, 7, 77], where communication is asynchronous, does not disrupt the learning process,

and does not require a reply message from the receiving agent. Each agent conducts local

training steps uninterrupted and aggregates contributions received from in-neighbors as

they arrive.

7



1.1.3. Learning process and objective

Each agent aims to train its local model by utilizing its local dataset Di and informa-

tion received from its neighbors to minimize its average loss function Fi. To achieve this,

an agent employs its local data Di to train a local model by computing the mini-batch gra-

dient
`

Fi(xi; ξi) where ξi ∼ Di, and updating its local model using the gradient descent

update rule xi = xi − ηFi(xi; ξi), ξi ∼ Di, where η denotes the learning rate, ξi denotes a

local data batch sampled from Di, and xi denotes agent’s model parameters. This process

is repeated for E batch iterations, where E can be set to one for communication after

each training batch or increased to any arbitrary number to increase local computation

and reduce communication frequency. After the local training step, agents engage in a

communication step where they exchange information. Algorithm 1 [78] illustrates an ab-

stract agent training scheme. At te beggining of the training process, agents initialize their

model parameters with identical values, which facilitates a faster and smoother learning

curve [77]. A communication matrix W specifies the connections between agents, and the

parameter E specifies the number of local batch training iterations before agent commu-

nication. Each agent first conducts local model training using its local data, followed by

a communication step in which each agent sends and may receive model updates from

its neighbors. This cyclic process continues for a predetermined and arbitrary number of

rounds.

Algorithm 1 Agents abstract training process according to [78]

Require:
Initialize η > 0, agents A, communication matrix W , number of local batch iterations
E
xi = 0 for all agents i ∈ A ▷ Initialize all agents models to identical value

1: repeat for agent i ∈ A ▷ In parallel
2: for e = 0, 1, 2, ..., E, at agent, i do
3: ξi ∼ Di ▷ Sample new mini-batch from local distribution
4: xi = xi − ηFi(xi; ξi) ▷ Train model on batch

5: Send(xiWji) ▷ Send model to peers
6: Receive(xjWij) ▷ Receive model from peers
7: xi = Aggregate(xjWij)
8: until Maximum iteration reached

Output: 1
N

∑N
i=1 xi, N = |A| or xi∀i ∈ A ▷ Output is either one global model produced

by averaging all models or personal model for each agent
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The primary objective of collaborative learning is typically to generate a single global

model by averaging the model parameters of all agents at the conclusion of the training

process:

xglobal =
1

N

N∑
i=1

xi. (4)

Producing a single global model is typically favored in large-scale machine learning fa-

cilities to expedite the learning process by leveraging multiple training agents [16, 17, 4,

30, 77, 50, 51, 82, 88]. However, alternatively, each agent may pursue its own learning

objective, resulting in one model per agent [44, 11, 87, 1, 6, 94, 9, 45, 28, 67, 95, 5,

96, 49, 65]. In this scenario, each model is tailored to the specific characteristics of its

respective agent, exhibiting optimal performance when utilized by the agent who trained

it. However, if deployed on an agent with a different data distribution, the model may

yield suboptimal performance.

1.2. Non-IID environment

In collaborative learning systems (FL and P2P), the assumption of identically and

independently distributed (IID) data [13] is often challenged by the reality of real-world

datasets [33]. Non-IID data, characterized by varying distributions and dependencies

across different agents, presents a significant challenge in collaborative learning scenarios.

Non-IID data pertains to datasets wherein the distribution of data across agents or de-

vices is non-uniform, resulting in distinct data distributions among different agents and

potentially leading to heterogeneous local datasets. According to Ma et al. [54], types

of data heterogeneity in decentralized systems are: feature distribution skew, label dis-

tribution skew, same label different features, same feature different labels, and quantity

skew.

To examine various forms of data heterogeneity, we will investigate an image classifi-

cation task involving three classes, each representing different geometrical shape (square,

circle, triangle) in a environment with two agents.

IID environment: In an IID environment, both agents exhibit an identical distribution
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of class samples with consistent features. Figure 6 illustrates the data distribution in an

IID environment, wherein both agents possess an equal number of samples per class, and

each class is represented by identical features.

Figure 6: Data distribution in IID environment.

Feature distribution skew: In scenarios where an agent’s local data displays feature

distribution, the representation of certain features may vary from one agent to another,

while the distribution of samples per class remains consistent across all agents. In Figure

7, both agents possess an equal number of data samples per class; however, the features

pertaining to the Square and Triangle classes differ between Agent 1 and Agent 0. Despite

the variation in features, such as Agent 0 possessing dark blue squares and Agent 1

possessing light blue squares, all data samples represent the same class, namely Square.

Figure 7: Feature distribution skew in non-IID environment.

Label distribution skew: Label distribution skew denotes varying amounts of data

samples per class within the local datasets of agents. In Figure 8, Agent 0 possesses 100

samples of the Square class and 5 samples of each of the other classes. Conversely, Agent

1 contains 100 samples of the Circle class, along with 3 samples of the Square class and 5

samples of the Triangle class. Label distribution skew is apperent when the distribution

of all classes are compared between the two agents. However, if y = Triangle, both agents

share an equal probability for a feature x to belong to the Triangle class.
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Figure 8: Label distribution skew in non-IID environment.

Same label, different features: Different features associated with the same label indi-

cate that the distribution of features varies across different agents, while the distribution

of samples per class remains consistent. In Figure 9, Agent 1 exhibits different features

for the Square and Triangle classes compared to Agent 0. Nevertheless, the number of

data samples per class remains unchanged between the two agents.

Figure 9: Same label, different features in non-IID environment.

Same features, different label: Different labels associated with the same feature indi-

cate that the distribution of labels associated with a certain feature varies across different

agents, while the distribution of samples per class remains consistent. In Figure 10, Agent

0 assigns different labels to identical features, compared to Agent 1. For instance, features

representing a square geometric shape are labeled as Square by Agent 0, whereas Agent 1

labels them as Circle. This discrepancy applies to all other data in this example; for each

feature, each agent assigns a different label. However, the data representing each feature

is identical between the two agents.

Quantity skew: Large disparities in the quantity of available data samples per class are

referred to as quantity skew. Figure 11 illustrates a scenario where Agent 1 possesses a

significantly different number of data samples compared to Agent 0.

It’s crucial to recognize that non-IID environments can manifest varying degrees of

each type of data heterogeneity, rather than being limited to a single type. This diversity
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Figure 10: Same features, different label in non-IID environment.

Figure 11: Quantity skew in non-IID environment.

in heterogeneity amplifies the differences in the local datasets of agents even further.

1.3. Research motivation

Non-IID data present a big challenge to the applicability of peer-to-peer learning

systems in realistic world applications [54]. Non-equality in data distribution between

decentralized agents significantly impacts the overall learning process which negatively

impacts the usability of such learning methods in practice. Related studies already pro-

posed some methods and techniques that try to minimize the negative impact of the

non-IID on the learning process through personalization [89, 19], multi-task learning [73,

70, 40, 59, 62, 36, 35] and meta-learning [3, 39, 24]. All methods can be perceived as

forms of personalization techniques aimed at optimizing each agent’s model performance

within non-IID environments.

However, related research frequently concentrates solely on simulated synthetic non-

IID environments, achieved by artificially inducing specific data transformations [95, 65,

96, 49, 46]. According to Ma et al. [54], among the most frequently employed datasets

in Federated Learning, which is also susceptible to the challenges posed by non-IID envi-

ronments, are image classification datasets like MNIST [18], CIFAR-10 [43], and Fashion-

MNIST [91]. Synthetic non-IID environments are crafted by introducing data manipula-
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tions, such as image rotation, to achieve skewed feature distributions, label permutations

across features to induce heterogeneity in same-feature, different-label scenarios, or by

creating quantity skew through data sample partitioning, where certain agents possess

samples of specific classes in substantial quantities while having minimal or no samples

from the remaining classes. Such simulated environments may not align closely with re-

alistic non-IID datasets. Hence, there exists a gap in research that necessitates attention,

specifically in the realm of realistic non-IID environments within peer-to-peer learning

systems.

1.4. Research overview

This doctoral dissertation will explore three key areas of personalized peer-to-peer

learning aimed at mitigating the adverse effects of non-IID data within peer-to-peer

learning environments. Specifically, the research will focus on on-device personalization,

multi-task learning, and personalized peer connection establishment within peer-to-peer

environments.

The most advances regarding on-device personalization were made within Federated

Learning. Studies have shown that model personalization, achieved by fine-tuning agents’

local models post-FL training, enhances local model accuracy [89, 19]. Batch Normal-

ization (BN) [37] layers have also been used for local personalization in FL with certain

modifications, such as not averaging BN parameters. In approaches like FedBN [47] and

MTFL [58], BN layers are stored locally by each agent and excluded from FL averag-

ing, while SiloBN [2] employs standard FL for averaging all model parameters, including

BN layers. However, in the context of peer-to-peer learning environments, there are no

existing studies that explore the use of BN layers for model personalization.

In multi-task learning scenarios, the objective is to group agents based on their hetero-

geneity properties to minimize the negative effects of non-IID data. Various strategies for

organizing multi-task learning have been proposed. In Federated Learning, the most com-

mon approach involves storing one part of the model locally on the agents while sharing

the other part with a central server, as demonstrated in several studies [3, 47, 72, 55, 58].

By splitting the model, agents retain both general and task-specific knowledge. An ex-
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treme approach, studied by [11], allows any part of the neural network model to be shared

among peers in peer-to-peer environments. This method achieved a relative accuracy in-

crease of approximately 9% with 80% model averaging, compared to 100% averaging. An

alternative FL method explored grouping agents based on the similarity of their models,

where only the models within the same group are aggregated to form a new group-global

model [36]. In light of current research, the primary objective has consistently been to

train a single task across all agents. However, it remains unexplored whether multi-task

learning can be effectively applied in environments with such high heterogeneity between

agents that they are essentially learning different tasks. This can be examined by fa-

cilitating peer-to-peer learning among agents working on distinct tasks within the same

data modality, allowing for a more nuanced understanding of how collaboration can be

leveraged despite task variation.

Multi-task learning can also be facilitated by strategically manipulating agent con-

nections and clustering agents with similar data [5] or model properties [67, 65, 96, 46,

49, 95]. By establishing personalized connections only between agents with comparable

data or model characteristics, the negative impact of heterogeneity is reduced, thereby

improving the overall learning outcomes. However, several challenges may arise when

enabling agents to form personalized connections, such as accurately and efficiently iden-

tifying similar peers, mitigating communication imbalances, and preventing tendencies

toward centralization. Current research does not provide sufficient data on these issues

for existing methods of personalized peer connection establishment.

1.5. Thesis objectives, hypotheses and scientific contributions

The research aims to explore and enhance existing techniques for mitigating the ad-

verse effects of non-IID data on the learning process of agents within peer-to-peer learning

systems. The objective is to investigate the feasibility of adapting personalization tech-

niques from Federated Learning and to explore potential benefits of collaboration among

clusters of agents addressing different tasks. The primary goal is to enable more effective

peer-to-peer learning in non-IID environments, thereby increasing the practical applica-

bility of such systems in real-world scenarios, particularly for independent researchers and
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organizations lacking the necessary equipment, software, and resources to establish and

maintain servers managing the Federated Learning process.

A sequence of studies were conducted within this doctoral thesis to either devise

personalization techniques or assess methods for autonomous connection establishment

in peer-to-peer environments within realistic non-IID scenarios. The studies primarily

focus on mitigating the adverse effects of non-IID data in peer-to-peer systems, primarily

through personalized learning processes for individual agents. These approaches include

both model personalization and the establishment of personalized peer connections.

The first study [80] investigates the efficacy of integrating Batch Normalization [37]

layers into the model architecture as a means to alleviate the negative impact of non-

IID data and enhance the learning process of agents. Batch Normalization layers are

widely employed in training deep learning neural network (DNN) models [31, 34, 81, 85]

and have been demonstrated to be beneficial in Federated Learning as a personalization

technique [61, 92, 47, 58]. However, additional methods are required when utilizing Batch

Normalization layers in standard Federated Learning under non-IID constraints to achieve

model convergence. Realistic user-generated datasets Reddit [14] and StackOverflow [74]

are utilized to evaluate the advantages of incorporating Batch Normalization layers in

peer-to-peer learning. Previous research has illustrated the considerable representational

capacity of Batch Normalization layers, as evidenced by achieving high test accuracy solely

by training these layers on a randomly initialized model [69, 25]. Therefore, the first study

aims to explore whether a similar methodology can be employed within a peer-to-peer

environment as a personalization technique. The hypothesis is as follows:

Hypothesis 1: Personalizing normalization layers in peer-to-peer learning sys-

tems positively affects local accuracy on realistic data.

The second study [79] delves into an extreme scenario of data heterogeneity, where

distinct groups of agents are engaged in learning entirely different tasks within a multi-

task environment. The objective of the study is to ascertain whether all agents can engage

in collaboration and exchange information (model parameters) such that the collaborative

effort yields benefits for all agents without incurring any communication or computation

overhead. Building upon previous demonstrations of clustering agents based on model
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and data similarity conditions [70, 94, 59, 83, 11], the study seeks to ascertain whether

an effective method exists for establishing connections between agents that enhances the

average accuracy and convergence of individual local models in a multi-task environment

with entirely different tasks. The following two hypothesis were tested in the study:

Hypothesis 2: Collaboration between agents learning different tasks within the

same data modality positively affects the average accuracy and convergence

of individual models in the context of multi-task learning.

Hypothesis 3: Implementing a method for determining connections between

agents positively affects the average accuracy and convergence of individual

models in the context of multi-task learning.

The third study [78] conducts an empirical evaluation and comparison of methods for

autonomously establishing connections between agents in a peer-to-peer system. Recent

research has witnessed a surge in studies focusing on devising methods for a personalized

approach to creating peer connections in non-IID environments, fostering communication

among agents sharing similar properties such as data distribution or model parameters.

Empirical investigations carried out in synthetic non-IID environments have demonstrated

promising benefits of the proposed methods across various types of data heterogeneity,

outperforming the baseline approach of random connection creation. This study aims

to compare the latest methods in both simulated synthetic and realistic non-IID envi-

ronments. The average model accuracy metric is utilized to measure the average local

model accuracy, while the efficiency of methods’ communication is measured by the num-

ber of exchanged messages. Furthermore, the Gini coefficient is employed to quantify

the average communication balance of an agent. The optimal method, based on achieved

accuracy and the number of messages required to attain top accuracy, is determined using

the Pareto method. Based on previous research results and the stated objective of the

study, the following hypothesis is tested by the study:

Hypothesis 4:Methods of autonomously establishing connections between agents

based on the similarity of local models and data positively impact the accuracy
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of local models on realistic data compared to randomly assigned connections.

Drawing from the preceding exposition of the thesis hypotheses and the published studies,

the principal scientific contributions of this thesis include:

C1 A method for personalizing peer-to-peer agents’ model based on normalization lay-

ers.

C2 A method for establishing peer connections and exchanging model weights among

agents within a multi-task learning environment.

C3 A method for training shared model layers to achieve faster convergence and better

accuracy in a multi-task learning environment.

C4 A framework for evaluation, comparison, and selection of optimal methods for au-

tonomous and personalized peer connection, in synthetic and realistic non-IID en-

vironments
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2. ELABORATION

The doctoral thesis is structured in the format of a compilation thesis, comprising three

scientific articles published in indexed journals. This section offers a thorough overview of

the research questions, methodology, results, and conclusions presented in these articles

to establish the coherence of the thesis. Each paper addresses specific research questions

within the broader context of mitigating the adverse effects of non-IID data in peer-to-peer

systems, primarily focusing on personalized learning processes for individual agents.

2.1. An overview of conducted studies

The first study, Peer-to-peer deep learning with non-IID data [80], aimed to develop

a more suitable peer-to-peer learning method tailored for non-IID environments, particu-

larly addressing challenges related to asynchrony and inactive agents. Traditional peer-to-

peer methods typically involve synchronous model exchanges among agents, which may

not be ideal in scenarios where some agents are inactive or do not participate in model

exchange. To address this limitation, a novel approach was introduced, wherein agents are

allowed to receive a variable number of messages upon completing the training step, just

before transitioning to the subsequent training iteration. Through computer simulations,

it was demonstrated that this new method outperformed both synchronous and asyn-

chronous baseline approaches, particularly in sparse network topologies. Moreover, the

new method required fewer exchanged messages per agent while achieving higher average

local model accuracy. Additionally, the first study introduced a personalization technique

leveraging Batch Normalization layers within the model architecture. By fine-tuning

Batch Normalization layers, agents could personalize their models to better fit their local

data, consequently improving the local model accuracy. Experimental results illustrated a

significant relative increase in local accuracy, especially in experiments involving datasets

exhibiting higher degrees of non-IID properties.

The second study, Multi-task peer-to-peer learning using an encoder-only transformer

model [79], aimed to explore the feasibility of promoting collaboration among agents
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operating in an extreme non-IID environment, where each group of agents is assigned

distinct learning task within the same data modality. Specifically, the study focused

on two Natural Language Processing (NLP) tasks: masked-token prediction (MPT) and

named-entity recognition (NER). Leveraging the encoder-only transformer architecture

employed in the BERT model [20], the study utilized the encoder as a shared model base

for both tasks. The output produced by the attention layers within the encoder was

directed to task-specific classifiers. Notably, while the task-specific components of the

models were shared only among agents learning the same task, the encoder segment could

be exchanged among all agents. This approach harnessed the encoder’s capacity to retain

shared knowledge across all agents, irrespective of their assigned tasks. The experiments

conducted in the second study demonstrated a degradation in the accuracy of local models

when employing a randomly generated sparse topology for agent connections, as opposed

to the results obtained when agents exclusively exchanged models with those learning

the same task. The reason for this degradation was identified as some agents exclusively

communicating with agents learning different tasks, leading to the task-specific layers

never being exchanged by certain agents. Hence, a method for establishing connections

between agents in a multi-task setting was introduced to mitigate agent isolation. The

experimental findings demonstrated that collaboration among agents learning different

tasks can enhance local accuracy when the connections between agents are thoughtfully

established.

The third study, An Overview of Autonomous Connection Establishment Methods in

Peer-to-Peer Deep Learning [78], aims to investigate whether the autonomous establish-

ment of peer connections between agents positively influences the performance of local

models on realistic data compared to randomly assigned connections. The study ex-

amines recently proposed methods for autonomous connection establishment in non-IID

environments. Through a series of computer simulations, it aims to identify the optimal

method and approach in various synthetic and realistic non-IID environments. The study

revealed that since all methods lack restrictions on the number of connections per agent,

certain approaches exhibit high centralization tendencies. This means that a limited set

of agents end up sending messages to most of the agents in the network, leading to a

high imbalance in communication load. The Pareto method was employed to identify the

optimal methods on the Pareto front, considering the achieved top average accuracy and
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the average number of messages per agent required to reach the top accuracy. Among the

methods evaluated, PANMLoss [49] and PANMGrad [49] emerged as optimal solutions

in both synthetic and realistic non-IID environments. Additionally, DAC [95] and DiPLe

[96] were identified as optimal solutions specifically in the realistic non-IID environment.

These findings confirm the beneficial impact on agents’ model accuracy in non-IID en-

vironments when connections between agents are autonomously established compared to

randomly assigned connections.

Together, these studies collectively underscore the considerable potential of personal-

ization techniques in non-IID environments to enhance the performance of agents’ local

model.
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2.1.1. Peer-to-peer learning method and personalization technique for non-

IID data environments

Šajina et al. [80] devised a novel peer-to-peer learning approach wherein an agent

could receive a variable number of messages between training steps. In the same study,

the impact of incorporating Batch Normalization [37] layers into the model architecture on

the learning process within a non-IID environment was examined, comparing it with both

the new proposed method and existing baseline methods. Furthermore, a personalization

technique that leverages Batch Normalization layers was introduced. See Appendix A for

the entire article and Appendix D for supplemental materials containing the results and

reproducible python code.

2.1.1.1. Introduction

When examining the communication dynamics among agents within a communication

model, both communication symmetry and synchronicity are key considerations. Syn-

chronous approaches [4, 30, 44] entail a synchronization barrier that must be overcome

once all messages between agents are exchanged, rendering the direction of communica-

tion less significant. Undirected asynchronous communication [50, 9, 94, 1, 87, 10, 11],

on the other hand, indicates that there is no synchronization barrier restricting the agent

training process; however, communication between two agents remains synchronous. In a

case when two agents exchange model parameters between themselves, both agents must

send and receive model parameters before continuing to the training step, or communi-

cating with other peers. Among these, asynchronous directed communication [7, 10, 77] is

the most permissive, as the sending agent does not await a response. The receiving agent

integrates the received model parameters with its local model and can continue learning

according to its designated learning behavior.

In realistic environments, opting for a sparse communication topology is typically

the simplest strategy. For instance, arranging agents into a ring topology [51, 50, 53,

82] presents more challenges, as it necessitates adherence to specific connection rules,

which can be difficult when agents lack a comprehensive overview of the entire network.
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While asynchronous directed communication methods like gossip averaging [7, 10, 77] are

designed with sparse topologies in mind, communication is structured such that an agent

sends its message to a random peer in the network. This assumes that each agent possesses

knowledge of the entire network, which may be impractical in real-world scenarios. More

practically feasible solutions involve asynchronous communication with a limited set of

peers, as seen in approaches like [87, 1, 6, 94, 9], which mimic Blockchain applications

[26, 90, 32] already deployed in production. Sparse peer-to-peer networks formed in these

approaches were primarily proposed for training linear models. To address the mentioned

gaps in research, the study aims to propose a new asynchronous method with directed

communication that follows a given network topology by building upon the GoSGD [7]

method.

Batch Normalization (BN) [37] is a well-established technique known to enhance the

convergence and precision of machine learning models. Widely used in training deep learn-

ing neural network (DNN) models [31, 34, 81, 85], BN has been shown to improve model

performance in the Federated Learning (FL) setting. However, utilizing BN in a vanilla

FL setup does not necessarily lead to model convergence, prompting the development

of alternative approaches to address this issue [61, 92, 47, 58]. Despite its effectiveness

in FL, the application of BN in a peer-to-peer (P2P) learning setting remains relatively

understudied. This study explores the effectiveness and utility of incorporating Batch

Normalization (BN) layers as part of the model architecture in a peer-to-peer (P2P)

learning setting.

Model personalization has been shown to significantly enhance the accuracy of agents’

models in Federated Learning (FL) by conducting additional training, or fine-tuning,

of the agent’s model after the completion of FL training [89, 19]. This approach is

particularly advantageous for agents whose data distributions diverge significantly from

the global distribution in FL scenarios [89]. The study introduces a model personalization

technique that leverages BN layers to conduct model personalization during the peer-to-

peer learning process, rather than at its conclusion. This method notably enhances the

accuracy of agents’ local models.

Experiments were conducted to evaluate all addressed problems and proposed methods

using two datasets for the next-word prediction task [29]. The datasets used were the

Reddit [14] dataset and the StackOverflow [74] dataset, which consist of user comments.
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These datasets represent two characteristic domains: Reddit, a more general discussion

forum, and StackOverflow, which has a narrow focus on software engineering. In the

experiments, each dataset was partitioned such that each agent’s dataset consisted of all

comments from a unique user. It’s important to note that each comment may comprise

multiple sentences. In line with previous experiments [29, 41, 89, 68, 75], the vocabulary

size was fixed at the 10,000 most common words, resulting in 10,000 classes for the

model output. Any words beyond this set are treated as out-of-vocabulary tokens and are

disregarded when computing prediction accuracy. Sentences are segmented into sequences

of 10 words, and the objective of the model is to predict the subsequent word, thereby

framing the task as a classification problem.

This study also aimed to quantify the degree of non-IID properties within the Red-

dit and StackOverflow datasets. Utilizing the Jensen-Shannon divergence (JSD) metric,

which measures the similarity between two probability discrete distributions, the objec-

tive was to assess the label distribution skew (see Section 1.2) among all agents’ datasets.

A JSD value of 0 implies the absence of label distribution skew, while a value closer to

1 indicates higher label distribution skew. The obtained JSD values of 0.6633 for the

Reddit dataset and 0.5687 for the StackOverflow dataset indicate relatively high label

distribution skew among agents. The quantity skew data heterogeneity is evident in both

the Reddit and StackOverflow datasets. On average, each Reddit agent trains on 654

examples, with approximately 80% of agents having fewer than 700 examples. Similarly,

each StackOverflow agent has an average of 1134 training examples, with around 74%

of agents having fewer than the average number of training examples. Considering that

the next-word prediction task involves 10,000 unique classes, each agent typically has

representation from only a small fraction of these classes in their training split, with a

maximum of approximately 10% of the classes represented in the best-case scenario.

The Average User Model Accuracy (UA) metric [58] was utilized to evaluate the overall

performance of the learning process. UA represents the average accuracy across all agents

on their respective local test datasets and can be computed as follows:

UA =
1

n

n∑
i=1

acci (5)

where acci represents the prediction accuracy of model i on its local test dataset i (both
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owned by agent i). Prediction accuracy (acci) is determined by the fraction of correct

predictions (True Positives (TP) and True Negatives (TN)) over the total predictions (TP,

TN, False Positives (FP), and False Negatives (FN)):

acci =
TPi + TNi

TPi + TNi + FPi + FNi

. (6)

2.1.1.2. Peer-to-peer learning method

The P2P-BN method is inspired by the GoSGD approach [7] and builds upon [38,

10], where the received model parameter updates are averaged upon receipt, rather than

waiting to average all received models once all are received [4, 30, 44, 28, 50, 51, 53,

82, 88]. In P2P-BN, an agent communicates based on any predetermined topology, with

communication occurring in either an undirected or directed direction. During the com-

munication step, instead of sending a model update to a random agent in the network as

in GoSGD, in P2P-BN, an agent maintains a set of peers to which it is connected and

with which it communicates, as inspired by other peer-to-peer methods [87, 1, 6, 94, 9].

The P2P-BN method allows an agent to train the local model for a predetermined

but arbitrary number of local iterations through its local dataset before proceeding to

the communication step. During the communication step, an agent sends its model to all

of its peers and then waits for a period of time to receive updates from its peers. In a

non-IID environment, continuing local training without receiving any model updates may

lead to overfitting and suboptimal model performance due to low representation in data

samples and quantity deficiency in the local dataset. Therefore, an agent may receive

one or more updates from its neighboring peers before continuing to the training step.

This training-communication cycle is repeated for a predetermined number of rounds, as

with all learning methods. Figure 12 showcases the steps performed by three agent in

a unbalanced undirected communication topology in which agent A2 is neighboring with

agents A1 and A3, while the agents A1 and A3 are only neighboring with agent A2. Despite

this unbalanced communication, the learning process in the P2P-BN method is not stalled

because each agent only requires the reception of at least a single model update from its

peers.
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Figure 12: The learning and communication process of three P2P-BN agents in a unbal-
anced topology [80].
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The P2P-BN method was compared to several baseline methods, including D2 [82],

SGP [63], and GoSGD [7]. Since GoSGD typically sends messages to random agents

in the network, its communication behavior was adjusted in the experiments so that

agents select their neighbors based on the specific experiment’s network topology. All

experiments utilized a single model architecture, which consisted of an Embedding layer

with a dense embeddings size of 100, followed by a GRU layer [15] with 100 units, a

Fully Connected layer with 100 units, and finally an output layer with 10,002 units. This

version of the model was termed as non-BN model, since it did not contain any BN layers.

The initial experiment was conducted using a ring topology with both undirected

and directed communication, involving 100 agents. Table 1 presents the average top

UA achieved by agents in each approach and the average number of exchanged messages

per agent required to reach that accuracy. In terms of exchanged messages, the P2P-

BN consistently required the fewest, although it only outperformed other methods in

undirected communication for the Reddit dataset. GoSGD performed best in undirected

communication for the StackOverflow dataset, while the SGP method was optimal in

directed communication for both datasets.

Table 1: The average top UA and the average number of exchanged messages per agent
for both the Reddit and StackOverflow datasets in ring topology using the non-BN model.

Undirected Directed
Dataset Approach # of messages Test UA # of messages Test UA
Reddit

D2 275730 4.86% 142410 6.19%
GoSGD 18662 4.71% 13288 4.84%
SGP 257720 4.64% 144020 6.29%
P2P-BN 16318 5.55% 7029 5.28%

StackOverflow
D2 321300 7.44% 227409 9.59%
GoSGD 36648 7.49% 20916 7.39%
SGP 310464 7.21% 222500 9.61%
P2P-BN 17336 7.19% 7029 6.66%

2.1.1.3. Personalization method

Since similar studies [89, 19] in Federated Learning have shown that additional training

iterations on the local model can improve local accuracy in non-IID environments, and

Batch Normalization layers have been shown to provide positive benefits in FL as a form
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of personalization [61, 92, 47, 58], BN layers were adopted as a basis for personalization

in P2P-BN. Given the assumption of non-IID data, agents may differ in the quantity of

local data they possess. After a certain number of learning rounds (train-communication

steps), agents with limited data are likely to degrade their model after the local training

step due to the low representation in training examples. If an agent cannot improve the

local model, it freezes all non-BN layers. The proposed personalization technique, referred

to as the BN fine-tuning method, involves freezing the non-BN layers and training only

the BN layers. This improvement is based on the previously demonstrated remarkable

representational capacity of BN layers [25]. Similar to the early stopping technique [60],

a validation dataset is used to determine when the layers need to be frozen or unfrozen.

The ablation study aimed to assess the impact of BN fine-tuning on local accuracy. In

the experiments, a model with BN layers added after the GRU and Fully Connected layers,

termed the BN model, was utilized. The experiments involved 100 and 300 agents con-

nected by a directed or undirected sparse graph with three neighbors. Training with the

BN fine-tuning (BN-TF) technique resulted in a relative top UA increase of approximately

20% for the Reddit dataset and around 15% for the StackOverflow dataset. Statistical

significance was confirmed by the Student t-test, with a p-value of p < 2× 10−2 for both

the 100 and 300 agent groups.

2.1.1.4. Impact of Batch Normalization on peer-to-peer learning in non-IID

environments

The impact of Batch Normalization layers was examined by comparing a model with-

out BN layers to a model with BN layers. The experiments were conducted in the ring

topology, using both undirected and directed communication. Table 2 provides a sum-

mary of the average top UA and the average number of exchanged messages per agent

required to achieve that accuracy. In the BN model experiments, compared to the closest

second-ranked GoSGD, P2P-BN achieved a mean relative top UA increase of 19.9% for

the Reddit dataset and 13.9% for the StackOverflow dataset. For all approaches, the use

of BN layers enabled faster convergence and higher accuracy. The exceptions were the

D2 and SGP methods, which obtained slightly lower results in directed communication.
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However, they still benefited from faster convergence, thereby requiring a lower number

of exchanged messages.

Table 2: The average top UA and the average number of exchanged messages per agent
for both the Reddit and StackOverflow datasets in ring topology using the BN model.

Undirected Directed
Dataset Approach # of messages Test UA # of messages Test UA
Reddit

D2 84840 6.08% 57570 6.85%
GoSGD 23779 6.43% 10419 6.71%
SGP 139472 6.08% 62178 6.74%
P2P-BN 11144 7.18% 6633 8.54%

StackOverflow
D2 254847 7.92% 189924 8.76%
GoSGD 46906 8.5% 20667 8.96%
SGP 159968 7.87% 147500 8.71%
P2P-BN 6895 8.69% 7920 10.69%

The performance of P2P-BN was further evaluated and compared to baseline ap-

proaches on both undirected and directed, fixed and time-varying sparse network topolo-

gies. When creating a sparse communication matrix, each agent was assigned three neigh-

bors. In the time-varying network scenario, the communication matrix was altered every

five rounds, causing each agent to change its peers every five rounds. The time-varying

scenario aimed to investigate the impact of highly dynamic environments on the learning

process. Table 3 summarizes the top UA achieved for each variation of the experiment. D2

and SGP achieved higher top UA in undirected communication, while GoSGD and P2P-

BN performed better in directed communication. Similarly, in the varying undirected

topology, D2 and SGP achieved better results compared to the fixed topology experi-

ments, whereas in the varying directed topology, GoSGD and P2P-BN achieved higher

top UA compared to the fixed topology experiments. In the sparse topology experiments,

P2P-BN exhibited a mean relative top UA increase of 32.9% for the Reddit dataset and

26.6% for the StackOverflow dataset compared to the closest second-ranked GoSGD.

2.1.1.5. Discussion

The P2P-BN method developed in this study falls within the gossip averaging family

of peer-to-peer learning methods [38, 17, 10, 7]. P2P-BN is asynchronous, meaning it
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Table 3: Average top UA results of 100 agents in fixed undirected and directed, and
varying undirected and directed sparse topology experiments conducted on the Reddit
and StackOverflow datasets.

Fixed Varying
Dataset Approach Undirected Directed Undirected Directed
Reddit

D2 6.91% 6.84% 7.26% 6.84%
GoSGD 6.95% 7.63% 7.64% 7.66%
SGP 6.94% 6.73% 7.16% 6.73%
P2P-BN 9.40% 10.17% 9.89% 10.26%

StackOverflow
D2 8.99% 8.85% 9.37% 8.77%
GoSGD 8.91% 9.65% 9.63% 9.65%
SGP 8.92% 8.62% 9.35% 8.62%
P2P-BN 11.49% 12.61% 12.13% 12.27%

does not require agents to synchronize once the synchronization barrier is met. After an

agent completes a training step, it forwards the new model parameters to its neighbors.

Subsequently, an agent may receive one or more model parameter updates from its peers

before continuing to the next training step. This flexibility in the number of messages

an agent can receive allows it to maintain participation in the learning process even in

cases of lost messages or disconnection from some of its peers. Methods like D2 and SGP

necessitate that each agent receives messages from all its neighbors before proceeding to

the next training step. If a message is lost, an agent would stall at the communication step

and would be unable to proceed to the training step. This lack of resilience to lost messages

can impede the learning process, especially in scenarios where network communication is

prone to errors or disruptions.

The P2P-BN method incorporates a personalization technique tailored for non-IID en-

vironments, allowing agents to enhance the accuracy of their local models. This technique

involves training only the Batch Normalization layers of the model when it’s determined

that the agent cannot improve the overall model accuracy. A validation dataset is em-

ployed to decide whether to perform full model training or solely train the BN layers.

Results from an ablation study showcased an average relative increase of approximately

17% in agents’ local accuracy when employing BN fine-tuning personalization technique.

With the BN fine-tuning personalization technique integrated, P2P-BN demonstrated

significant improvements in the next-word prediction task. Simulations revealed that,

on average, P2P-BN achieved a mean relative top accuracy increase of 16.9% in ring
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topologies (19.9% for Reddit and 13.9% for StackOverflow datasets) and 29.8% in sparse

communication topologies (32.9% for Reddit and 26.6% for StackOverflow datasets) com-

pared to the best-performing baseline approach.

There are several limitations to consider in this study. Firstly, the evaluation was

confined to a next-word prediction task, indicating the need for further investigations

across diverse non-IID datasets employing various data modalities to ascertain the gener-

alizability of P2P-BN. Additionally, the reliance on Batch Normalization layers imposes

constraints on the model architecture utilized by the agents, as the model must contain

BN layers in order for the BN fine-tuning technique to work. The performance of P2P-BN

may vary in scenarios where agents exhibit disparities in hardware capabilities, necessi-

tating further examination to address potential imbalances. The variability in training

speed among agents can introduce challenges in maintaining synchronization and ensuring

effective communication in the peer-to-peer learning process. Agents with faster train-

ing speeds may complete their training steps quickly and communicate with their peers

sooner than slower agents. This could lead to imbalances in the communication frequency

and timing, potentially affecting the overall convergence and performance of the learning

process. While the asynchronous nature of P2P-BN may mitigate some of these issues,

comprehensive studies are essential to fully understand its effectiveness various scenarios.

This study addresses the contribution C1. Contribution C1 focuses on introducing a

novel personalization technique that leverages Batch Normalization layers for agent model

personalization. The experiments conducted in the study validate the positive impact of

this technique on the accuracy of agents’ local models. By fine-tuning Batch Normaliza-

tion layers, agents can adapt their models to better suit their individual datasets, leading

to improved model accuracy and performance.
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2.1.2. Multi-task peer-to-peer learning method

Šajina et al. [79] introduced a novel peer-to-peer learning method designed to foster

collaboration among agents tasked with different Natural Language Processing (NLP)

objectives. The study focused on agents engaged in two specific NLP tasks, masked-

token prediction (MPT) and named-entity recognition (NER). In addition, the study also

introduces a technique for constructing a network topology that connects agents based

on their task objective. Furthermore, the study introduced a method for strategically

training shared model layers, optimizing the learning process and further boosting local

model accuracy. See Appendix B for the entire article and Appendix D for supplemental

materials containing the results and reproducible python code.

2.1.2.1. Introduction

Under high non-IID constraints, agents may essentially be learning different tasks due

to variations in features and learning objectives. One way to address this scenario is

through multi-task learning, which involves dividing the model into two parts: a shared

part and a task-specific part. The shared part, shared among all agents, captures general

knowledge and understanding of the underlying data. On the other hand, the task-specific

part is responsible for predicting target values based on the outputs of the shared model

part. This approach allows agents to collaborate effectively while accommodating their

diverse learning objectives and data distributions.

In Federated Learning, multi-task learning is commonly implemented by keeping the

task-specific or personalized parts locally on the agents, while the shared part is exchanged

with the server to form a new global model, comprised only of the shared part. This

approach has been explored in various studies [3, 47, 72, 55, 58]. Experimental results

have demonstrated that the base layers contain valuable knowledge, as evidenced by the

drop in accuracy when the model was tested solely with the personalized part [3]. Another

approach involves dividing agents into groups based on the similarity of their models [36].

In this setup, only the models within a certain group of agents are aggregated to form

a new group-global model. This approach essentially creates several disjoint groups of
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agents learning different tasks.

Taylor et al. [83] applied multi-task learning as a form of personalization technique for

predicting future mood, stress, and health outcomes. Their approach involved dividing

the model into two components: a shared part and multiple task-specific parts. User data

was clustered based on personality and gender. The shared part of the model extracted

features relevant to all clusters, while the task-specific parts generated predictions tailored

to each cluster. Multi-task learning outperformed the single-task baseline, improving

accuracy by approximately 12%.

Pilet et al. [11] extended the concept further by suggesting that any part of the

neural network model could be shared with any peer or groups of peers. Through their

experiments, they determined that allocating 80% of the model parameters as shared was

optimal for multi-task learning. This allocation led to a relative increase in accuracy by

9% compared to scenarios where 100% of the model parameters were shared (essentially

mono-task learning). However, the authors underscored that the number of performed

mini-batch updates had a more significant impact than the size of the shared part. These

experiments were conducted on the FEMNIST [14] dataset of handwritten characters,

which was grouped by the author of the handwritten characters.

Mohammadi et al. [59] adopted a similar approach to peer-to-peer learning as in Fed-

erated Learning studies, where each agent maintains a residual model specific to its data

while sharing general knowledge model with neighboring agents. Multi-task learning can

also be implemented in peer-to-peer environments by strategically managing agent connec-

tions to cluster agents with similar tasks, akin to the FedAMP method [36]. Zantedeschi et

al. [94] introduced a technique for dynamically forming peer-to-peer connections by lever-

aging the similarity among agents’ local linear models based on empirical loss. Subsequent

studies have extended this approach to neural networks, enhancing model performance in

scenarios with diverse synthetic non-IID environments [65, 96, 46, 49, 95]. These studies

primarily focus on a image classification task, by applying image transformations such as

varying rotations, label semantics, and data distributions to simulate a synthetic non-IID

environment. By leveraging techniques like dynamic formation of peer-to-peer connec-

tions based on local model similarities and empirical loss on local datasets, these methods

have shown promise in improving model accuracy and convergence in non-IID settings.

This study aims to facilitate multi-task collaboration between two separate groups of
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agents, with each group focusing on a different NLP task. The objective is for individual

agents to improve their learning capability by engaging in collaboration with agents tack-

ling the same task as well as those addressing a different task. To evaluate this method,

two NLP tasks will be employed: masked-token prediction (MTP) and named-entity

recognition (NER). The study adopts the encoder-only transformer architecture from the

BERT [20] model as the base model part for both the MTP and NER tasks. The output

produced by the attention layers in the encoder is directed to a task-specific classifier, ei-

ther for MTP or NER. In essence, each agent possesses a single encoder model and a final

task-specific output layer, enabling focused learning on the designated task. Leveraging

the encoder’s capability to retain shared knowledge across all agents, irrespective of their

assigned clusters, the research ensures that the task-specific components of the models

are confined within their respective clusters. The study adopts the BERT-Tiny [86] archi-

tecture, featuring two attention heads, two transformer blocks in the hidden layers, and a

hidden size of 128 units. This configuration results in a compact model comprising eight

million parameters. The choice of this architecture is justified by the constrained resources

of agents, such as mobile or IoT devices, which have limited memory and computational

capabilities. Moreover, sharing larger models over the network would incur additional

communication costs, and the scarcity of data available to agents reduces the necessity

for larger models. The primary focus of the study lies in facilitating multi-task learning

across diverse tasks within decentralized networks rather than achieving state-of-the-art

accuracy on any specific NLP task. Figure 13 shows the architecture of the models used

for the MTP and NER tasks.

Figure 13: Architecture of MTP and NER models [79].
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Using the Reddit [14] and StackOverflow [74] datasets for the masked-token prediction

(MTP) task, and the CoNLL-2003 [84] and Few-NERD [21] datasets for the named-entity

recognition (NER) task, the experiments incorporate diverse data sources for both tasks.

In the experiments, each agent is assigned a dataset from a unique user in the Reddit and

StackOverflow datasets, as these datasets are collected at the user level. For the NER

datasets, data is partitioned uniformly among agents. Given that the Few-NERD dataset

is considerably larger than the CoNLL-2003 dataset, only 20% of the Few-NERD dataset is

utilized in the experiments. On average, each agent has approximately a thousand training

examples, regardless of the dataset or task. For the MTP task, a [MASK ] token serves as

a placeholder for the word being predicted, transforming the objective into a next-word

prediction (NWP) task [68, 75]. Solely predicting the final word of a sentence might not

fully leverage the contextual information encoded in the BERT-based model, as it restricts

the model’s ability to consider the entire sentence context. This limitation could diminish

the advantage of BERT’s contextual understanding. However, this characteristic also

introduces additional task heterogeneity, which can further introduce complexity when

establishining the similarites between the MTP and NER tasks.

The study employs metrics measured at the agent level using each agent’s local data.

The Average User Model Accuracy (UA) [58] metric, is utilized to evaluate the perfor-

mance of the overall MTP learning process. Additionally, the F1 score metric is employed

to assess the performance of the NER task. F1 metric is defined as the unweighted average

(macro f1-score) of precision and recall, given as follows for agent i:

precisioni =
TPi

TPi + FPi

, (7)

recalli =
TPi

TPi + FNi

, (8)

F1-scorei =
2× recalli × precisioni

recalli + precisioni

. (9)

2.1.2.2. Multi-task learning method
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The proposed technique builds upon the P2P-BN [80] approach as the peer-to-peer

learning method. The personalization technique, BN fine-tuning, relying on Batch Nor-

malization layers is omitted from the proposed method since the model architecture does

not contain Batch Normalization layers. Each agent is tasked with solving either the MTP

or NER task, denoted as Ti, where type(Ti) ∈ {MTP,NER}. Every model mi consists

of an encoder-only transformer, referred to as the encoder layer, along with additional

task-specific layers. The encoder layer is shared among all agents, while the task-specific

layers are shared only among agents within the same task T . It’s important to note that

each agent is trained to solve only one task Ti but leverages multi-task collaboration to

enhance its local model accuracy. During the model update exchange process between

agents i and j, if type(Ti) = type(Tj), a standard model averaging operation is performed:

mi =
mi+mj

2
. However, if type(Ti) ̸= type(Tj), only the encoder layer of the model is av-

eraged: m
(encoder)
i =

m
(encoder)
i +m

(encoder)
j

2
, where m

(encoder)
i and m

(encoder)
j represent only the

encoder layer of models mi and mj, respectively.

In the initial experiments, a directed sparse topology is employed, with each agent

having three in-neighbors and three out-neighbors. As a baseline, individual clustered

task-specific (CTS) learning is utilized, where agent groups are trained separately for

each task and dataset. For instance, agents learning the MTP task exclusively communi-

cate with other agents assigned to the same task. In all experiments, a group consisting

of twenty agents is trained for each task (dataset). The topology is predefined and estab-

lished at the beginning of the training process based on the specific learning tasks assigned

to the agents. This setup allows for a direct comparison between the proposed multi-task

learning approach and the baseline CTS approach. The experiments were designed such

that two groups of agents, with each group learning a different task on a specific dataset,

collaborated using the proposed multi-task method. The results presented in Table 4

indicate that the collaboration between agents learning different tasks may not be ad-

vantageous. Specifically, only the agents learning the NER task using the CoNLL-2003

dataset experienced a slight increase in accuracy when exchanging information with agents

learning the MTP task, for both the Reddit and StackOverflow datasets.
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Table 4: Average top Test UA achieved by agents in a sparse topology for each of the
multi-task combinations [79].

Collaboration Dataset (Task) Reddit StackOverflow CoNLL-2003 Few-NERD
CTS baseline 9.10% 9.02% 53.13% 31.69%
MT

Reddit - 8.85% 53.63% 31.14%
StackOverflow 8.43% - 53.03% 30.51%
CoNLL-2003 8.43% 8.35% - 31.58%
Few-NERD 8.68% 8.81% 56.17% -

2.1.2.3. Topology organization method

The initial experiment revealed that collaboration between agents learning different

tasks had a negative impact on the local agents’ accuracy. Upon investigation, it was

discovered that due to the random assignment of peer connections in the sparse topology,

some agents only collaborated with agents learning a different task. As a result, these

agents did not receive the task-specific parts of the model from any peer, leading to

less robust task-specific components and decreased local accuracy compared to the CTS

baseline.

To address this issue, a solution was devised where an agent communicates with a

predefined portion of agents sharing the same task and a predefined portion of agents

learning a different task. This approach limits the number of connected peers from another

task (|{Wij > 0 and Ti ̸= Tj}|) to a specific fraction of the total number of connected

peers (|{Wij > 0}|) to achieve better results. This restriction is denoted by the parameter

PT as a fraction of connected peers from a different task to the total number of connected

peers. Mathematically, it can be expressed as:

PT =
|{Wij > 0 ∧ Ti ̸= Tj}|

|{Wij > 0}|
(10)

In the experiments with limited non-task-specific peer connections, the parameter PT is

set to 0.33, defining a clustered sparse topology. Consequently, in the clustered sparse

topology, each agent establishes two peer connections with agents within the same task

and one with an agent from a different task. Figure 14 shows an example of task-specific

clusters, sparse, and clustered sparse.

The results depicted in Table 5 demonstrate a notable improvement in agents’ local
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(a) Task specific clusters (b) Sparse (c) Clustered sparse

Figure 14: An example of task-specific clusters (a), sparse (b), and clustered sparse (c)
topology [79]. Agent color represents the learning task.

accuracy across most experiments conducted in the clustered sparse topology. However,

there were instances of degraded performance, particularly in the experiments involving

the NER task with the Few-NERD dataset. Furthermore, agents using the Reddit dataset

exhibited lower accuracy when collaborating with agents using the CoNLL-2003 dataset.

Table 5: Average top Test UA achieved by agents in a clustered sparse topology for each
of the multi-task combinations [79].

Collaboration Dataset (Task) Reddit StackOverflow CoNLL-2003 Few-NERD
CTS baseline 9.10% 9.02% 53.13% 31.69%
MT

Reddit - 9.90% 53.40% 30.24%
StackOverflow 9.46% - 53.43% 30.98%
CoNLL-2003 8.86% 9.10% - 31.61%
Few-NERD 9.20% 9.22% 56.54% -

2.1.2.4. Shared model layers training method

Due to the suboptimal results achieved in the case of the Few-NERD dataset, an ad-

ditional technique is introduced to improve the convergence and consensus of the shared

model part. The additional technique introduced aims to enhance convergence and con-

sensus of the shared model part, particularly in scenarios with mixed-task neighborhoods.

When an agent communicates with peers from a different task, only the encoder layer is av-

eraged, and subsequently, the receiving agent freezes its encoder layer for the next training

round. This freezing mechanism ensures that the shared encoder layer, representing com-

mon knowledge, converges slowly, allowing agents to update task-specific layers without

altering the shared part significantly. Formally, denoting the frozen model as ∥mi∥ , agent
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i performs the next local training round on mi as follows: mi = mi−ηFi(∥mi∥; ξi), ξi ∼ Di

for E iterations. This approach, akin to personalization, enables agents to adapt their

models while maintaining a consensus on shared knowledge. It’s crucial to highlight that

freezing the encoder layer occurs selectively, triggered only when an agent interacts with

peers from different tasks, ensuring stability and convergence in heterogeneous environ-

ments. The new method is termed as MT-EF.

The final multi-task learning method is succinctly summarized by the pseudo-code

presented in Algorithm 2, delineating the global agent behavior. Analogous to the P2P-

BN paradigm, all agents commence the learning process by initializing their models with

uniform parameters, ensuring homogeneity in the encoder layer weights across all agents,

irrespective of the task assignment. At each iteration, an agent selected from those that

have received updates since the last active state undergoes local training. Following the

training step, the chosen agent unfreezes the encoder layer, if previously frozen, before

disseminating the model parameters to its peer agents. In instances where a peer agent

is engaged in a distinct task Ti ̸= Tj, the peer agent freezes the encoder layer subsequent

to the aggregation of the received update.

Algorithm 2 Agents training simulation pseudo-code [79]

1: function Train(A,W,E)
2: A: agents
3: W: communication matrix
4: E: number of epochs to perform locally
5: Initialize(A) ▷ Initialize all agents models and encoder layers to identical

model parameters
6: repeat
7: ai = RandomActiveAgent(A) ▷ Random agent which received at least

one update from last active state
8: LocalTrain(ai, E)
9: if IsEncoderFrozen(ai) then

10: UnfreezeEncoderLayer(ai)

11: for aj in Neighbors(W,ai) do
12: if Tj ̸= Ti then
13: encoder(aj) = AverageEncoder(aj, ai)
14: FreezeEncoder(aj)
15: else
16: Model(aj) = AverageModel(aj, ai)

17: until Maximum iteration reached

Table 6 delineates the outcomes garnered from experiments conducted employing the
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clustered sparse topology alongside the MT-EF technique for each of the two multi-task

combinations. The results evince a substantial augmentation in the local agents’ accuracy,

particularly for MTP agents, with all experiments manifesting a statistically significant

average increase of 11.6% in the mean relative accuracy in comparison to the CTS baseline.

Moreover, the strategic freezing of the shared model part facilitated swifter consensus

attainment among agents, consequently resulting in enhanced accuracy outcomes.

Table 6: Average top Test UA achieved by agents in a clustered sparse topology using
the MT-EF method for each of the multi-task combinations [79].

Collaboration Dataset (Task) Reddit StackOverflow CoNLL-2003 Few-NERD
CTS baseline 9.10% 9.02% 53.13% 31.69%
MT-EF

Reddit - 11.10% 54.20% 32.23%
StackOverflow 10.73% - 53.89% 32.92%
CoNLL 10.35% 10.43% - 32.19%
Few-NERD 10.35% 10.60% 56.22% -

As prior experiments have indicated the beneficial nature of MT-EF collaboration

between two distinct tasks for both clusters of agents, the subsequent experiment assesses

the efficacy of training all four tasks within a clustered sparse topology using the MT-

EF approach. Predicated on the parameter PT (set to 0.33), each agent establishes a

solitary peer connection with another agent tasked with a different objective, and two peer

connection with agents learning the identical task. Consequently, once all connections

are established, all clusters become interconnected through at least one agent, albeit

not all agents engage in communication with agents from all tasks (refer to Figure 15

for an illustration). All four distinct groups of agents achieved higher top accuracies

when trained within a multi-task framework, indicating that limited collaboration between

agents tasked with different objectives invariably yields benefits for all agents. Table

7 encapsulates the attained top UA accuracies, with the average results from previous

experiments involving two-task combinations provided for reference (2 tasks (avg)). It

is discernible that all agents attained a higher top accuracy when concurrently learning

all four tasks compared to the average top accuracy achieved in preceding experiments

focusing on two-task combinations, with the exception of the Few-NERD agents, whose

results, while slightly lower, remained comparable.

39



Figure 15: An example of four different agent clusters with two task-specific and one
non-task-specific connection randomly formed with another cluster of agents, regardless
of the task. [79].

Table 7: Average top Test UA achieved by agents in a clustered sparse topology using
the MT-EF method when all four multi-task groups of agents were collaborating simul-
taneously [79].

Collaboration Dataset (Task) Reddit StackOverflow CoNLL-2003 Few-NERD
CTS baseline 9.10% 9.02% 53.13% 31.69%
MT-EF 2 tasks (avg) 10.48% 10.71% 54.77% 32.45%
MT-EF 4 tasks 10.55% 10.88% 57.32% 32.33%
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2.1.2.5. Discussion

The multi-task peer-to-peer learning method developed in this study proved to be

effective in enhancing the local model accuracy of agents when collaborating with peers

engaged in distinctly different tasks within the same data modality. Outperforming the

CTS baseline approach, wherein agent solely exchange information within their respec-

tive task clusters, proposed method showcased its potential when peer connections were

thoughtfully organized. It became evident that in randomly generated sparse topologies,

agents might exclusively interact with peers learning different tasks, leading to suboptimal

local model performance due to the absence of peers sharing the task-specific model part.

Through the introduction of a carefully designed clustered sparse topology, where a por-

tion of agent connections was dedicated to cross-task communication, this limitation was

addressed. Furthermore, the integration of the MT-EF method further augmented the

benefits of multi-task collaboration by strategically freezing the encoder part upon receiv-

ing updates from agents learning different tasks. This approach facilitated quicker model

convergence and enhanced local model performance by fostering consensus on the shared

encoder part. Overall, experiments demonstrated an average relative increase in accuracy

of approximately 11.6% compared to the CTS baseline, thus validating the efficacy and

practicality of the proposed multi-task learning method.

Several limitations are identified in this study. Firstly, the proposed approach requires

all tasks to use identical sequence lengths during multi-task learning. While in the do-

main of causal language modeling, the next-word prediction (NWP) task often employs

a 20-word sequence as model input [68, 75], our experiments did not strictly adhere to

this practice in the context of the MTP task. Preliminary experiments revealed that

using different sequence lengths favored the task with the shorter sequence while signif-

icantly disadvantaging the task with a longer sequence. This discrepancy arises because

the model, when trained on short sequences, tends to disregard information beyond the

short sequence length, often treating it as irrelevant padding. Moreover, the scope of

the studied method is currently limited to evaluation solely on NLP tasks. Future re-

search should investigate whether similar setups can be applied to other domains, such

as vision processing. Additionally, in NLP tasks, each word must be converted to a

41



numeric representation using a tokenizer. While existing literature typically assumes a

globally shared tokenizer, we acknowledge this as a limitation and an avenue for future

investigation. Specifically, research could explore methods for achieving consensus on the

tokenizer to be used for the purpose of the agent local data preprocessing. Furthermore,

the experiments conducted in this study were confined to two distinct NLP problems,

utilizing four different datasets with a set of twenty agents from each dataset. To gain

deeper insights into the presented approach, future research should focus on scaling up

by increasing the number of agents and tasks. Additionally, the impact of the parameter

PT on the multi-task learning process warrants further investigation through additional

experiments.

This study contributes to C2 and C3. Contribution C2 involves the development of

a method for facilitating peer connections and exchanging models among agents within a

multi-task learning environment. This method utilizes an encoder-only transformer as a

shared component exchanged among all agents, alongside task-specific parts exclusively

exchanged among those sharing the same task. Furthermore, the approach integrates

a clustered sparse topology, ensuring that each agent communicates with only a small

percentage of peers learning a different task. Contribution C3 centers on enhancing

model convergence speed and local model accuracy by introducing a form of personaliza-

tion technique. This technique involves refraining from training the shared encoder-only

transformer part under specific conditions, such as when an agent receives a message

from a peer learning a different task. The experiments conducted in the study confirm

the positive impact of this technique on the accuracy and convergence of agents’ local

models.
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2.1.3. Autonomous connection establishment methods

Šajina et al. [78] conducted a comprehensive review, analysis, and evaluation of re-

cently proposed methods for autonomous and personalized peer connection establishment

within peer-to-peer learning environments. The evaluation spanned both synthetic and

realistic non-IID datasets, aiming to assess and compare the average local model accu-

racy of agents and the communication load per agent. Additionally, the study delved into

the centralization tendencies exhibited by the analyzed methods. Employing the Pareto

method, the study identified solutions lying on the Pareto front for individual non-IID

scenarios, as well as for the collective results across all diverse non-IID scenarios. See

Appendix C for the entire article and Appendix D for supplemental materials containing

the results and reproducible python code.

2.1.3.1. Introduction

Clusters of agents can exhibit comparable non-IID attributes, emphasizing similarities

within each cluster while simultaneously revealing significant differences across distinct

groups or individual agents. This scenario was evident in our previous study where two

clusters of agents, each learning a distinct task, collaborated between themselves. Various

methods have been developed in the context of Federated Learning to identify coherent

groups of agents using clustering techniques, aiming to enhance personalization [27, 52,

71, 23]. In Federated Learning, the identification and estimation of agent clusters are

more feasible since all agents communicate solely with a central server, which has the

capability to create different models for different clusters of agents, thereby essentially

enabling multi-task learning. In contrast, in decentralized peer-to-peer systems, there

is no single entity orchestrating the entire process, leaving each agent responsible for

its own learning trajectory. Identifying clusters within peer-to-peer systems presents a

challenge, as agents themselves are tasked with identifying other similar agents within the

network. However, if executed effectively, facilitating peer connections between agents

sharing similar non-IID attributes can effectively transform the learning problem towards

a more IID environment. This may facilitate the production of agents’ local models with
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similar parameters, ultimately aiding model convergence and the attainment of higher

local accuracy.

As part of our first study [80], we sought to quantify the disparities among agents’ lo-

cal datasets to explore the variations and commonalities across different agents for Reddit

[14] and StackOverflow [74] datasets. To achieve this, we employed the Jensen-Shannon

divergence (JSD) metric, a technique for assessing the dissimilarity between two discrete

probability distributions. In our context, JSD served as a means to assess the dispar-

ity in target label distributions between pairs of agents, essentially measuring the label

distribution skew between agents. Let’s denote the label probability distributions of two

training datasets as P and Q, and let M represent the midpoint of the probability vectors

P and Q. Vector P and Q represent the probability of certain label being available in an

agent’s local dataset. Consider a scenario involving two agents with differing distributions

of examples across distinct labels. In this case, the label probability for one agent can

be represented by the vector P , while the label probability for the other agent can be

expressed by the vector Q. The following vector examples illustrate the differing label

probabilities for two distinct agents in a scenario where the dataset consists of ten unique

class labels, resulting in vectors of length ten:

P1 =
[
0.39 0.45 0.01 0.02 0.01 0.01 0.01 0.02 0.01 0.01

]
, (11)

Q2 =
[
0.01 0.02 0.01 0.02 0.01 0.01 0.40 0.43 0.01 0.01

]
. (12)

In this example, P1 represents the label probabilities for the first agent, while Q2 denotes

the probabilities for the second agent. It is evident that the first agent has a majority

of its local training examples concentrated in classes indexed as 0 and 1, whereas the

second agent has the highest proportion of examples for class labels indexed as 6 and 7.

This demonstrates a clear difference in the distribution of label examples between the two

agents, reflecting heterogeneity in their respective local datasets.

The Jensen-Shannon divergence (JSD) between P and Q using the KL divergence

DKL can be expressed as follows:

JSD(P∥Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M), (13)
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M =
1

2
(P +Q), (14)

DKL(P∥Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
. (15)

The distance measured by the metric falls within the [0, 1] range. A small divergence value

(close to 0) indicates a high similarity between the class distributions in both datasets.

Conversely, a high divergence value (close to 1) suggests a significant difference in the

class distributions. Applying this equations to example vectors P1 and Q2 will result in:

M =
[
0.21 0.25 0.01 0.02 0.01 0.01 0.22 0.24 0.01 0.01

]
, (16)

DKL(P1∥M) = 0.7262, DKL(Q2∥M) = 0.7254 (17)

JSD(P1∥Q2) =
1

2
· 0.7262 + 1

2
· 0.7254; JSD(P1∥Q2) = 0.7258, (18)

obtaining a JSD value of 0.72 signifying large divergence between label distributions for

the two example agents.

The JSD was also computed for several baseline synthetic IID and non-IID environ-

ments to provide further insights into the non-IID properties of the Reddit and Stack-

Overflow datasets. The MNIST [18] dataset of handwritten human digits, consisting of

ten unique classes, was utilized to generate these synthetic environments. The following

synthetic and realistic environments were assessed:

1. IID data setting [57]: This setting distributes all classes uniformly across different

agents,

2. Pathological non-IID data setting [57]: Here, the dataset is partitioned such that

each agent receives only two classes out of the ten.

3. Practical non-IID data setting [36]: In this scenario, the data is partitioned between

agents so that each agent has data from all classes, but with varying distributions;

certain classes may have a higher probability than others.
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4. Reddit: Includes data grouped by individual user.

5. StackOverflow: Includes data grouped by individual user.

In all evaluated environments, 100-agent datasets were utilized. For the synthetic

environments, this involved partitioning the MNIST data among the 100 agents according

to specific data settings. In the case of the Reddit and StackOverflow datasets, each

agent was allocated data from a distinct user. In the practical non-IID data setting,

agents received 80% of samples from two dominant classes and 20% of samples from

the remaining eight non-dominant classes. To analyze the differences between agents’

datasets, the JSD metric was computed for each pair of agents, resulting in a matrix

of distances between all agents. These distance matrices were sorted before plotting to

accurately represent clusters of agents with similar class distributions.

Figure 16 visualizes the JSD distances among agents’ datasets across various scenar-

ios. In the IID data setting, the distances are predominantly close to zero, indicating

high similarity among agents’ datasets and forming a single cluster. Conversely, in the

pathological non-IID data setting, substantial differences emerge between agents’ datasets,

leading to the formation of multiple distinct clusters around the diagonal axis. The simi-

larities between agents within the same cluster are notably high, indicating consistency in

their respective datasets. Conversely, the similarity between agents belonging to different

clusters is significantly lower, signifying distinct differences in their datasets. In the prac-

tical non-IID data setting, the matrix reveals differences between agents organized into

five clusters, with high inner-cluster similarities and consistent lower similarities between

agents from different clusters (highlighted in green). For the Reddit dataset, four promi-

nent clusters are observed, with lower similarities between agents from different clusters

compared to inner-cluster similarities. Similarly, the StackOverflow dataset produces mul-

tiple clusters, each encapsulating agents with progressively decreasing similarity within

an encompassing larger cluster.

The findings from the label distribution skew analysis indicate that within realistic

non-IID datasets, there exist datasets with similar characteristics, albeit identifying them

presents a challenge. Recent research endeavors have introduced methodologies utilizing

data [5] or model [65, 67, 49, 46, 96, 95] similarity techniques to facilitate autonomous peer

connection establishment among agents, deviating from randomly assigned connections.
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Figure 16: Distance matrices of Jensen-Shannon divergence between agents’ local dataset
label distribution for MNIST in: a) an IID data setting, b) a pathological non-IID data
setting, and c) a practical non-IID data setting; and for Reddit (d) and StackOverflow (e)
datasets [79]. Dark blue indicates substantial similarity between agents’ datasets, while
bright yellow suggests significant differences.
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However, empirical investigations within these studies have predominantly concentrated

on synthetic non-IID environments. In such environments, the developed methodologies

have demonstrated favorable outcomes across a spectrum of synthetic non-IID scenarios

when compared with a baseline approach representing random agent connections.

2.1.3.2. Personalized autonomous peer connection establishment methods

Personalized peer connections among agents have been explored within the realm of

multi-task learning [70, 94, 83]. This approach involves organizing agents into distinct

clusters, each tasked with learning different objectives toward a common goal. By segre-

gating agents based on data heterogeneity, favorable learning outcomes can be achieved.

These agent clusters work on identical problems but exclusively communicate with peers

possessing similar datasets, mitigating the adverse effects of data heterogeneity. Various

similarity metrics are employed to group peers together, drawing from metadata [83], gra-

dients [22, 71, 23], model weights [71, 64, 13, 52], or local data model loss [9, 65, 95, 49,

76]. Metadata, for instance, may encompass geolocation, language, or user attributes like

personality and gender [83]. Furthermore, data distribution skew can serve as metadata

when designing topologies [5]. Similarity between gradients or model weights is often

computed using metrics like cosine or Euclidean distance, with small Euclidean distances

and large cosine similarities indicating agents with similar data distributions [49]. Finally,

model similarity can be assessed by evaluating the loss value derived from the loss function

on local data, with lower loss values suggesting greater similarity.

Several methods, including DAC [95], DiPLe [96], L2C [46], PANM [49], and PENS

[65], have leveraged empirical model loss as a fundamental metric for quantifying model

similarity. Despite variations in their implementations, each of these approaches shares

a common characteristic: the absence of a predetermined communication mixing matrix.

Instead, agents engage in communication with randomly selected peers, suggesting that

every agent possesses a comprehensive overview of the entire network. PANM also in-

troduced PANMGrad, a more efficient method for calculating model similarity, utilizing

cosine similarity to express similarity between gradients. However, PANMGrad requires
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both current gradients g and accumulated weight deltas h to calculate similarity.

Moreover, the AUCCCR algorithm [67] possesses the capability to infer the number

of clusters from the data without requiring a pre-determined number of clusters. In

the context of peer-to-peer learning, this data can be represented as each agent’s local

model output probabilities for a given test dataset. High similarity between two sets

of probabilities indicates similar agents, thereby facilitating the grouping of agents into

clusters. The current implementation of the AUCCCR method exhibits a centralized

aspect, as it necessitates gathering all agents’ model output probabilities on a single

test dataset to establish groups and form connections between agents within each group.

However, if demonstrated as effective method for peer-to-peer learning, further research

endeavors could focus on enhancing and decentralizing this approach. Furthermore, the

D-Cliques method [5] designs a communication matrix based on label distribution between

different local datasets, grouping agents into cliques with a maximum size of M .

2.1.3.3. Evaluation methodology

The learning process of agents was simulated in memory in a synchronized manner,

as all approaches presumed a synchronized network. These methods were evaluated on

both a computer vision (image classification) task and a NLP (next-word prediction)

task. For the computer vision task, one hundred agents were simulated using the CIFAR-

10 dataset [43] under various synthetic non-IID scenarios, while for the NLP task, the

simulation involved one hundred to two hundred agents utilizing the Reddit dataset [14]

involving a realistic non-IID scenario. The primary objective of the experiments is to

quantify the average local model accuracy of agents and the average number of exchanged

messages for each method. The number of neighbor peers was set to three, and specific

parameters of individual methods were adjusted accordingly. A fixed random sparse

topology served as a baseline environment, wherein connections between agents were

formed randomly, regardless of their cluster affiliation. Additionally, results of oracle

training, wherein agents only collaborated with peers sharing the same data properties

(e.g., image rotation), were provided. Experiments were conducted in scenarios with

two and four clusters of agents, with agents within the cluster sharing similar local data
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properties. Furthermore, all experiments were conducted for scenarios inovlving a small

and large amount of local training data available to each agent.

Given the distinctive peer selection protocols utilized in the examined methods, a com-

munication analysis was conducted to assess the equitable distribution of communication

load. To quantify this communication equilibrium, the Gini coefficient was employed. The

Gini coefficient ranges from zero, denoting perfect equality in communication distribution,

to one, indicating near-maximal centralization where all communication is directed to a

single peer. Furthermore, Pareto analysis was utilized to discern optimal solutions within

the conducted experiments, facilitating the identification of strategies that achieve a fa-

vorable balance between communication efficiency and model performance.

2.1.3.4. Experimental results

Synthetic non-IID environment. To create a synthetic non-IID environment, agents

clustered together were provided with tailored CIFAR-10 datasets, incorporating varia-

tions such as image rotation, label-swapping, or adjustments to data partitioning. In

experiments involving two clusters, the agents were divided such that half of them re-

ceived unmodified CIFAR-10 data, while the remaining half were provided with modified

CIFAR-10 data. Similarly, each cluster in the four-cluster experiments received a differ-

ently altered data.

To simulate a scenario where agents possess distinct features (such as rotation) associ-

ated to identical labels [54], agents from separate clusters were allocated data with varying

degrees of rotation. Results shown in Table 8 highlight only PANMGrad, PANMLoss and

PENS methods as consistently outperforming the sparse baseline. In the two-cluster sce-

nario, optimal solutions identified by the Pareto method encompassed oracle, AUCCCR,

PANMGrad, and PANMLoss. Conversely, in the four-cluster scenario, only oracle and

AUCCCR were deemed optimal.

To evaluate the effectiveness of the analyzed methods in a scenario where agents share

identical features (images) associated with different labels [54], an experiment involving

label swapping was conducted. Agents within specific clusters were allocated data with

modified labels, resulting in certain labels being swapped between features. In the two-
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Table 8: Results for the synthetic non-IID environment simulated by varying image rota-
tion between different clusters of agents [78].

{0°, 180°} {0°, 90°, 180°, 270°}
Method Ts=100 Ts=400 Ts=100 Ts=400
Oracle 43.80 49.44 41.52 46.79
Sparse 40.94 46.16 36.41 41.96
AUCCCR 41.33 49.22 33.85 42.61
DAC 40.61 47.98 36.32 42.61
D-Cliques 33.69 27.16 28.97 16.77
DiPLe 39.51 49.35 35.50 44.80
L2C 33.05 42.83 29.11 42.12
PANMGrad 41.12 49.62 36.56 45.48
PANMLoss 41.11 49.67 36.51 46.17
PENS 41.29 48.06 36.46 42.74

cluster experiments, agents in the first cluster received unaltered data, while agents in

the second cluster received data where the class index 0 was swapped with the class index

2, and vice versa. Table 9 presents the results obtained. In this non-IID scenario, no

discernible best solution was observed, although the PENS method consistently outper-

formed the baseline in all scenarios except the four-cluster scenario with a large training

dataset. The solutions residing on the Pareto front in both the two-cluster and four-cluster

scenarios, involving label swap experiments, include oracle, PANMGrad, PANMLoss, and

DiPLe, which emerged as optimal solutions. Additionally, PENS was identified as residing

on the Pareto front in the two-cluster experiments.

Table 9: Results for the synthetic non-IID environment simulated by varying label swaps
between different clusters of agents [78].

{None, [0, 2]} {None, [0, 1], [2, 3], [4, 5]}
Method Ts=100 Ts=400 Ts=100 Ts=400
Oracle 43.98 49.90 40.72 46.83
Sparse 45.51 50.77 42.10 48.53
AUCCCR 42.21 49.83 37.58 45.21
DAC 44.82 49.41 42.02 46.28
D-Cliques 36.59 30.46 32.36 26.49
DiPLe 44.73 54.92 40.57 51.86
L2C 36.29 43.68 33.20 43.13
PANMGrad 45.34 52.10 42.40 49.77
PANMLoss 45.47 49.92 42.17 46.32
PENS 45.52 52.17 42.35 48.52

To evaluate the performance of the studied methods under label distribution skew
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[54], the methods were assessed across three distinct scenarios:

1. A two-cluster setting with one cluster exclusively containing animal samples and

the other exclusively containing vehicle classes [95].

2. The pathological non-IID data setting [57], where the dataset is partitioned such

that each agent is allocated samples from only two out of ten possible classes.

3. The practical non-IID data setting [36], where the data is distributed among agents

ensuring that each agent possesses data from all classes, albeit with varying class

distributions, resulting in some classes having higher probabilities than others.

In both the pathological and practical non-IID scenarios, five distinct clusters are formed.

Table 10 summarizes the results of the experiment. PANMGrad, PANMLoss and PENS

methods consistently outperformed the sparse baseline in all scenarios. PANMGrad

emerged as the optimal solution across all scenarios. Furthermore, additional solutions

residing on the Pareto front include DAC in the two-cluster scenario, PANMLoss in the

pathological non-IID scenario, and DiPLe in the practical non-IID scenario.

Table 10: Results for the synthetic non-IID environment simulated by varying data par-
titioning methods applied between different clusters of agents [78].

{Vehicles, Animals} Pathological non-IID Practical non-IID
Method Ts=100 Ts=400 Ts=100 Ts=400 Ts=100 Ts=400
Oracle 55.18 61.22 83.73 84.83 40.83 67.70
Sparse 49.70 55.87 76.68 57.68 48.21 67.50
AUCCCR 55.07 61.45 83.50 83.82 42.38 67.48
DAC 52.11 56.84 79.10 75.54 47.74 64.80
D-Cliques 49.79 53.76 34.29 29.48 42.31 35.10
DiPLe 52.74 61.18 77.14 54.13 48.22 71.09
L2C 46.59 55.36 77.70 76.28 38.70 70.65
PANMGrad 55.85 62.43 79.70 78.49 48.98 69.37
PANMLoss 55.27 61.89 83.68 86.84 48.93 68.95
PENS 52.25 58.84 77.81 72.33 48.72 68.94

Realistic non-IID environment. The user data from the Reddit dataset was segmented

into groups based on the subreddit where the user posted. Only users who exclusively

posted in one of the four most popular subreddits (politics, leagueoflegends, nba, or Bit-

coin) were considered. Each resulting cluster comprises users with shared interests within

the cluster, while demonstrating dissimilarity in interests compared to all other clusters.
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For example, users who exclusively engage in the nba subreddit may not share any com-

mon interests with users who solely participate in the Bitcoin subreddit. Experiments

were conducted for each pair of clusters, along with an experiment involving all four clus-

ters combined, yielding a total of seven distinct scenarios. Experiments with two clusters

were merged due to their similar accuracies. The AUCCCR method was omitted from

the subsequent experiments due to its requirement for vector sizes proportional to the

square of the number of classes. This resulted in excessively large vectors for the NWP

task involving 10,000 classes.

Table 11 presents a summary of the results. DAC, DiPLe, PANMGrad, and PENS

consistently surpassed the sparse baseline across all scenarios. DAC and DiPLE emerged

as solutions residing on the Pareto front for the realistic non-IID environment. In the two-

cluster scenario with limited data, additional solutions included L2C, PANMGrad, and

PANMLoss. In the two-cluster scenario with a large dataset, additional solutions were

oracle and sparse. For the four-cluster scenario with limited data, additional solutions

comprised oracle, D-Cliques, PANMGrad, and PANMLoss. In the four-cluster scenario

with a large dataset, additional solutions were oracle, D-Cliques, and PANMGrad.

Table 11: Results for the realistic non-IID environment simulated by dividing agents into
clusters based on the subreddit to which the users posted [78].

2-cluster average 4-cluster
Method 300 < Ts < 700 1k < Ts < 5k 300 < Ts < 700 1k < Ts < 5k
Oracle 6.48 8.11 6.40 8.10
Sparse 6.72 8.35 6.76 8.65
DAC 7.20 8.94 7.33 9.20
D-Cliques 5.60 8.92 8.58 10.70
DiPLe 7.37 9.98 7.65 10.50
L2C 6.12 7.64 6.85 10.50
PANMGrad 7.10 8.56 7.22 8.82
PANMLoss 5.86 7.13 6.02 7.39
PENS 7.14 8.52 7.31 8.82

Communication analysis. To assess the centralization tendencies of the studied meth-

ods under various synthetic and realistic non-IID environments, the Gini coefficient was

employed to gauge the distribution of communication between agents. A low Gini co-

efficient suggests that all agents have a similar communication load, whereas a higher

Gini coefficient indicates that agents primarily source messages from a restricted peer set.
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The Gini coefficient values for the topologies utilized in the oracle, sparse, and AUCCCR

experiments unsurprisingly yielded a coefficient of 0, indicating perfect communication

balance. Methods D-Cliques and DiPLe demonstrated Gini coefficients below 0.1 in both

synthetic and realistic non-IID environments, indicating equitable distribution of commu-

nication load among agents. Furthermore, PANMGrad, PANMLoss, and PENS exhibited

Gini coefficients below 0.1 in the synthetic non-IID environment, but showed increased

coefficients (gini < 0.3) in the realistic non-IID environment, suggesting higher central-

ization tendencies. While DAC demonstrated a Gini coefficient below 0.1 in the realistic

non-IID environment, it exhibited a higher coefficient for synthetic non-IID environments.

Conversely, the L2C method showed very high centralization tendencies in both synthetic

and realistic non-IID environments.

In terms of the number of exchanged messages, all methods were adjusted to maintain

communication with approximately the same number of peers. Compared to the baseline

sparse topology, AUCCCR, DAC, PANMGrad, and PANMLoss methods exhibit similar

message communication frequencies, while the PENS method shows a 15% increase. The

L2C method demonstrates a 48% increase in message communication in synthetic non-

IID environments and a 12-fold increase in realistic non-IID environments. D-Cliques and

DiPLe methods display significant inefficiencies in terms of communication load, with

D-Cliques experiencing a minimum 50-fold increase and DiPLe demonstrating a 6-fold

increase in message communication.

2.1.3.5. Discussion

This study investigated communication-efficient peer-to-peer learning methodologies

within the context of non-IID data distributions, focusing on the autonomous and person-

alized creation of connections between agents. The studied methods were analyzed and

compared through a series of experiments varying in cluster counts, dataset sizes, and the

degree of non-IID properties in agents’ local data. Overall, in experiments regarding the

synthetic non-IID environment, PANMGrad and PANMLoss methods were identified as

the optimal solutions, suggesting their effectiveness in the image classification task. Cou-

pled with low communication requirements per agent and low centralization properties,
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the PANM method was deemed a superior approach in synthetic non-IID environments

compared to the sparse baseline, even outperforming the oracle reference.

In the experiments involving the next-word prediction task on a realistic non-IID

dataset, the oracle, DAC, DiPLe, PANMGrad, and PANMLoss methods were identified

as residing on the Pareto front. DiPLe was found to be very inefficient regarding the

communication load for agents, requiring a 6-fold increase in messages compared to the

sparse baseline, which significantly diminishes its applicability in realistic scenarios. DAC,

PANMGrad, and PANMLoss demonstrated comparable communication loads per agent as

the sparse baseline, with DAC displaying low centralization tendencies, while PANMGrad

and PANMLoss exhibited higher centralization properties.

Given the communication load on agents and the observed centralization tendencies,

the PANM method, in both its gradient-based (PANMGrad) and loss-based (PANMLoss)

variants, emerges as the optimal choice in conducted experiments. The centralization

tendencies observed in the PANM method may be subject to investigation and mitigation

in future studies.

Furthermore, researchers should prioritize the development of modifications that main-

tain or enhance communication efficiency while mitigating centralization tendencies. Cur-

rently, all examined methods require access to the complete network, involving all agents,

especially in the initial phases. However, this assumption is impractical for large and

volatile decentralized systems with a high churn ratio. Hence, future investigations should

focus on developing communication-efficient methods that enable agents to identify sim-

ilar peers without necessitating communication with the entire network.

We consider methodologies reliant on measuring agent similarity based on model loss

as more efficient than the PANMGrad method, which requires double the payload size

exchanged between agents. However, methods based on model loss similarity may not

be optimal when considering adversarial agents within the peer-to-peer network. Given

that the objective of adversarial attackers is to inject triggers that cause targeted misclas-

sifications without compromising model accuracy or disrupting convergence, it is quite

challenging to detect adversarial models based solely on loss similarity.

This study contributes to Contribution C4, which involves designing a framework for

the evaluation, comparison, and identification of optimal methods for autonomous and

personalized peer connection creation in synthetic and realistic non-IID environments.
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The experiments conducted by simulating agents’ learning process within these environ-

ments identified PANMGrad and PANMLoss as optimal for synthetic environments, and

DAC, DiPLe, PANMGrad, and PANMLoss for realistic non-IID environments. While

PANMGrad and PANMLoss exhibited low centralization tendencies in synthetic non-IID

environments, these tendencies were heightened in realistic non-IID environments. It was

observed that the DiPLe method is highly inefficient in terms of communication, while

the DAC method was only optimal in realistic non-IID environments with low central-

ization tendencies. In contrast, the DAC method underperformed in synthetic non-IID

environments with higher centralization tendencies. Although the PANM method was

identified as optimal in both synthetic and realistic non-IID environments, further studies

are needed to mitigate its centralization tendencies.
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3. CONCLUSION

This doctoral thesis is centered around mitigating the adverse effects of non-IID data

in peer-to-peer learning environments. Given the significant diversity in agents’ local data,

methods aimed at addressing the negative impact of non-IID can be categorized as person-

alization techniques. These personalization techniques encompass on-device personaliza-

tion, multi-task learning, and personalized peer connection establishment between peers.

For the purpose of investigating the impact of realistic non-IID data, realistic dataset col-

lected at user level were utilized in the thesis, namely Reddit and StackOverflow datasets

on a next-word prediction task.

A novel peer-to-peer learning method combined with a personalization technique was

devised and contrasted with baseline peer-to-peer learning methods using the Reddit and

StackOverflow datasets, consisting of users’ posts and comments. Simulations indicate

that the developed approach, on average, attains a mean relative top accuracy increase of

16.9% in ring (19.9% for Reddit, 13.9% for StackOverflow dataset) and 29.8% in sparse

(32.9% for Reddit, 26.6% for StackOverflow dataset) communication topologies compared

to the best baseline approach.

When considering heterogeneous environments where groups of agents may share sim-

ilar data characteristics within their group but not with agents outside the group, an

extreme case was explored in which groups of agents are learning distinctly different NLP

tasks. A new multi-task method was developed, employing an encoder-only architec-

ture based on the BERT model as the shared component across all agents, alongside a

task-specific component exchanged solely between agents learning the same task. With

additional consideration of communication topology and convergence enhancement strate-

gies, the experiments demonstrated a statistically significant increase of 11.6% in mean

relative accuracy compared to baseline results where agents only collaborated with peers

learning the same task. These results can be interpreted in two ways. Firstly, they affirm

that the proposed multi-task method is effective in scenarios where groups of agents share

similar data properties. Secondly, this method can also be applied in scenarios where

agents learning a specific task lack sufficient local data due to scarcity and non-IID prop-

erties, allowing them to collaborate with agents learning a different task within the same
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data modality to enhance their local model performance.

Identifying similar peers poses a significant challenge, particularly in decentralized

systems. This thesis evaluated several methods proposed in related studies for this pur-

pose, assessing their performance in synthetic and realistic non-IID environments. The

evaluation criteria included the top average accuracy of agents’ local models, the num-

ber of exchanged messages, and the centralization tendencies of each method, measured

using the Gini coefficient. The experiments revealed that the PANMGrad and PANM-

Loss methods overall outperformed others. Notably, the PANM method also surpassed

the sparse baseline, where connections between agents were randomly assigned, affirming

that personalized peer connections indeed lead to enhanced local model performance.

3.1. Scientific contribution

The doctoral thesis is founded on anticipated scientific contributions outlined in Sec-

tion 1.5. Herein, we seek to underscore these contributions once more, offering further

elucidation for each distinct contribution alongside evidence demonstrating the attained

results. Accordingly, the expected scientific contributions were:

C1 A method for personalizing peer-to-peer agents’ model based on normal-

ization layers.

The first study introduces a method for personalizing agents’ local models, which

leverages Batch Normalization layers as the central component of the personalization

technique. An early stopping-inspired approach is employed to ascertain the optimal

timing for conducting the personalization process.

C2 Amethod for establishing peer connections and exchanging model weights

among agents within a multi-task learning environment.

The second study proposes a technique that restricts the number of peer connections

between agents learning different tasks. Experimental findings demonstrate that this

approach leads to improved average local model accuracy among agents, compared
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to the baseline scenario where agents exclusively collaborate with peers learning the

same task.

C3 A method for training shared model layers to achieve faster convergence

and better accuracy in a multi-task learning environment.

The second study introduces a technique designed to strategically freeze the shared

model layers to accelerate convergence in multi-task learning environments. Specif-

ically, upon receiving model parameters from a peer learning a different task, the

shared model layers are frozen and maintained as such for the subsequent training

step.

C4 A framework for evaluation, comparison, and selection of optimal meth-

ods for autonomous and personalized peer connection, in synthetic and

realistic non-IID environments

The third study assesses and contrasts methods for autonomous and personalized

peer connection establishment across diverse simulated synthetic non-IID and real-

istic non-IID environments. Findings indicate that the PANM method, in both its

variants, emerges as the optimal approach overall. Moreover, the PANM method

(including some other methods) outperformed the sparse baseline, underscoring the

positive influence of personalized peer connection establishment on agents’ local

model accuracy.

3.2. Future research directions

The scientific contributions outlined in this doctoral thesis focus on mitigating the

impact of non-IID data on the learning process through diverse personalization techniques.

To further facilitate personalization for each agent, the model architecture should also be

adaptable to customization. Each agent ought to possess the autonomy to define its own

model based on the availability of local data and computational capabilities of the local
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device. Given the potential existence of heterogeneous agents, where some agents learn

at a faster pace than others, future research should address such scenarios and explore

their implications in non-IID environments.

This doctoral thesis employed the next-word task across experiments conducted in the

three studies. Notably, the data preprocessing involved the use of a predefined tokenizer

tasked with converting sentences into sequences of numbers. While it is customary in

the literature to assume a globally shared tokenizer, we recognize this as a limitation

and a prospect for future investigation. Specifically, this could entail research aimed at

establishing a consensus on the tokenizer to be utilized in the training process among

different agents within the network.

During the examination of autonomous methods for personalized peer connection es-

tablishment, we observed a common absence of restrictions regarding the number of peer

connections per agent. This lack of constraints could potentially lead to heightened cen-

tralization tendencies. Additionally, these methods often necessitate knowledge of the

entire network of peers, particularly in the initial stages, which may not be feasible in re-

alistic peer-to-peer learning environments. This aspect represents an open area for further

research and exploration.

The continuation of research in peer-to-peer machine learning, particularly when ap-

plied to realistic datasets, holds significant promise for addressing several pressing con-

cerns in the evolving landscape of decentralized learning systems. By fostering privacy-

preserving methods and improving security protocols, such research aligns with increasing

global demands for robust data protection and regulatory compliance. Furthermore, peer-

to-peer machine learning offers a compelling opportunity to reduce reliance on centralized

cloud infrastructure, translating into lower operational costs for cloud services. This is

particularly advantageous for smaller organizations or independent researchers who may

not have the resources to maintain extensive cloud-based infrastructure. An equally im-

portant future benefit is the mitigation of centralization biases, as data generated from

diverse edge devices could provide a more accurate and representative model of the real

world, overcoming biases often inherent in centrally aggregated datasets. Finally, peer-to-

peer systems are inherently more resilient, offering no single point of failure (SPOF), thus

enhancing system robustness and making them less vulnerable to large-scale disruptions.

Given these long-term benefits, it is crucial that research continues to push forward in
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this area, ensuring that future machine learning models are more equitable, secure, and

efficient.
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4. ABSTRACTS OF ARTICLES

4.1. Peer-to-peer deep learning with non-IID data

Collaborative training of deep neural networks using edge devices has attracted sub-

stantial research interest recently. The two main architecture approaches for the training

process are centrally orchestrated Federated Learning and fully decentralized peer-to-peer

learning. In decentralized systems, edge devices, known as agents, collaborate in a peer-

to-peer architecture, avoiding the need for a central system to orchestrate the process.

Decentralized peer-to-peer (P2P) learning techniques are well researched under the as-

sumption of independent and identically distributed (IID) data across the agents. IID

data is seldom observed in real-world distributed systems, and the training performance

varies significantly with non-IID data. This paper proposes a decentralized learning vari-

ant of the P2P gossip averaging method with Batch Normalization (BN) adaptation for

P2P architectures. It is well-known that BN layers accelerate the convergence of the

non-distributed deep learning models. Recent research confirms that Federated Learn-

ing methods benefit from using the BN method with some aggregation alterations. Our

work demonstrated BN effectiveness in P2P architectures by mitigating the non-IID data

characteristics across decentralized agents. We also introduce a variant of the early stop-

ping technique that, combined with BN layers, acts as a fine-tuning technique for agent

models. We validated our approach by conducting numerous simulations of different

model-topology-communication combinations and comparing them to other decentralized

baseline approaches. The evaluations were conducted on the next word prediction task

using user comments from the Reddit and StackOverflow datasets representing comments

from two different domains. Simulations showed that our approach, on average, achieves

a mean relative top accuracy increase of 16.9% in ring (19.9% for Reddit, 13.9% for

StackOverflow) and 29.8% in sparse (32.9% for Reddit, 26.6% for StackOverflow) com-

munication topologies compared to the best baseline approach. Our code is available at

https://github.com/fipu-lab/p2p_bn.
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Available at:

https://www.sciencedirect.com/science/article/abs/pii/S0957417422021777

Robert Šajina, Nikola Tanković, Ivo Ipšić, 2023. Peer-to-peer deep learning with non-IID

data. Expert Systems with Applications, Volume 214, ISSN 0957-4174,

DOI: 10.1016/j.eswa.2022.119159.
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4.2. Multi-task peer-to-peer learning using an encoder-only trans-

former model

Peer-to-peer (P2P) learning is a decentralized approach to organizing the collabora-

tion between end devices known as agents. Agents contain heterogeneous data, and that

heterogeneity is disrupting the convergence and accuracy of the collectively learned mod-

els. A common technique to mitigate the negative impact of heterogeneous data is to

arrange the learning process in a multi-task setting where each task, although it has the

same learning objective, is learned separately. However, the multi-task technique can also

be applied to solve distinct learning tasks. This paper presents and evaluates a novel ap-

proach that utilizes an encoder-only transformer model to enable collaboration between

agents learning two distinct Natural Language Processing (NLP) tasks. The evaluation

of the approach studied revealed that collaboration among agents, even when working

towards separate objectives, can result in mutual benefits, mainly when the connections

between agents are carefully considered. The multi-task collaboration led to a statisti-

cally significant increase of 11.6% in the mean relative accuracy compared to the baseline

results for individual tasks. To our knowledge, this is the first study demonstrating a

successful and beneficial collaboration between two distinct NLP tasks in a peer-to-peer

setting.

Available at:

https://www.sciencedirect.com/science/article/abs/pii/S0167739X23004053

Robert Šajina, Nikola Tanković, Ivo Ipšić, 2024. Multi-task peer-to-peer learning using

an encoder-only transformer model. Future Generation Computer Systems, Volume 152,

ISSN 0167-739X,

DOI: 10.1016/j.future.2023.11.006.
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4.3. An Overview of Autonomous Connection Establishment

Methods in Peer-to-Peer Deep Learning

The exchange of model parameters between peers is critical in peer-to-peer deep learn-

ing. Historically, connections between agents were assigned randomly based on network

topology. However, recent methodologies enable agents to autonomously establish their

connections, which is especially beneficial for non-IID data settings. Recent studies sug-

gest favorable learning outcomes for autonomous connections compared to fixed topology

when evaluated in synthetic non-IID environments. To that end, this study will explore

various methodologies to enhance learning outcomes. Through several large-scale experi-

ments with synthetic and realistic non-IID data sets, it evaluates communication efficiency,

message exchange frequency, and centralization tendencies. The findings underscore the

potential of these methods to enhance local model accuracy, uphold communication effi-

ciency, and resist centralization, rendering them highly suitable for decentralized learning

systems. The evaluation results establish PANMGrad and PANMLoss as the most effec-

tive solutions in such environments.

Available at:

https://ieeexplore.ieee.org/document/10633710

Robert Šajina, Nikola Tanković, Ivo Ipšić, 2024. An Overview of Autonomous Connection

Establishment Methods in Peer-to-Peer Deep Learning. IEEE Access, Volume 12, ISSN

2169-3536,

DOI: 10.1109/ACCESS.2024.3442014.
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APPENDIX

Appendix A, B, and C comprise the three published papers, respectively. Appendix

D contains supplementary materials, including a link to a public GitHub repository con-

taining instructions and reproducible code for all three published papers.
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1. Introduction

An increasing amount of connected edge devices, such as mobile phones, tablets, and

laptops, contain a vast amount of valuable but often private data. Sophisticated machine-

learning models can utilize edge device data to alleviate user experience with intelligent

recommender systems, voice recognition, typing predictions, or upgrade service quality in

financial, healthcare, and insurance domains, to name a few. There is a growing research

interest in utilizing edge devices’ local data and their computational capabilities to train

the models collaboratively with strong privacy guarantees.

The two main approaches to collaborative training are: (1) Federated Learning (FL)

[40], and (2) peer-to-peer (P2P) learning [7]. Federated Learning is a centralized approach

to orchestrating the process of training a single shared model using the data from edge

devices. Figure 1 shows the FL process overview. Prominent vendors often employ FL

architectures (e.g., Google Keyboard, Netflix, Siri). P2P learning techniques rely on an

established choreography that every edge device follows. In the P2P setting, the edge

devices are referred to as agents. A central parameter server is not required, and the

whole system is more resilient to different issues specific to centralized approaches.

Figure 1: Federated Learning process and the lifecycle of the FL-trained global model.
In each training round, the server chooses a subset of the online devices and sends them
a copy of the current global model. Clients perform local training steps on the received
model before returning the model to the server. This cycle is repeated for a finite number
of rounds and, as a result, produces a robust global model. The global model is then
deployed as a part of an application and used by the users during regular application
usage.
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The data on the edge devices is either identically distributed and independent (IID)

or non-IID. Heterogeneous or non-IID data is a common scenario in real-world use cases

[57, 39]. The data heterogeneity between devices is usually caused by feature and label

distribution skew, feature-label mapping differences, and quantity skew [39]. Training

models based on the IID assumption is a much more straightforward task compared

to the non-IID case. A well-known technique proven to enhance the convergence and

precision of machine-learning models is Batch Normalization (BN) [27]. BN is widely

used when training deep learning neural network (DNN) models [23, 25, 50, 52]. Using

BN with linear aggregation techniques, such as those used in FL, will not lead to model

convergence. Several studies propose alternative approaches to mitigate this issue [43, 56,

35, 41]. However, using BN in a P2P learning setting is not sufficiently studied.

This paper studies the effect of BN on existing decentralized approaches and presents

a variant of gossip averaging [6, 9] that uses BN layers as a crucial part of the model archi-

tecture. Using the BN layers leads to faster agent model convergence, and the proposed

early-stopping BN fine-tuning technique further improves the agent’s accuracy. The pro-

posed method was evaluated using two datasets on the next word prediction task [21], the

Reddit [11] and the StackOverflow [47] datasets of user comments. We used these datasets

to evaluate two characteristic domains: one being a more general discussion forum and

the other with a narrow focus on software engineering, demonstrating that the proposed

approach applies to both scenarios.

Our contributions can be summarized as follows:

• BN fine-tuning - an adaptation of the early-stopping technique for model personal-

ization specific to BN layers;

• P2P-BN - a gossip averaging-based approach compatible with Batch Normalization

layers that uses BN fine-tuning to produce stable and consistent models for the next

word prediction task, resulting in better accuracy with a significant decrease in the

number of exchanged messages;

• evaluation of using Batch Normalization on existing decentralized approaches for

improving the model convergence and accuracy on non-IID data.

The rest of this paper is organized as follows. Section 2 provides more details on Batch

Normalization and decentralized learning. Section 3 reviews and describes related work.
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The P2P-BN is presented in Section 4. Section 5 presents the methodology used and the

results. The limitations are enumerated in Section 6, and Section 7 concludes the paper.

2. Background

This section will introduce the concepts of decentralized learning and the Batch Nor-

malization method used extensively in DNNs.

2.1. Decentralized learning

A decentralized approach does not require a central server to orchestrate the learning

process. Agents are organized in a peer-to-peer network topology and exchange messages

with their neighbors. Agents form connections based on the provided communication

graph, such as ring, fully connected, or sparse (see figure 2). Agents can have fixed

connections (fixed) or change neighbors through time (time-varying).

Figure 2: Examples of 10 agents organized in directed/undirected ring, fully connected,
and sparse graph topologies. In this example, the sparse graph was formed by connecting
each agent with three other agents (each agent has three neighbors).

Communication between agents can be synchronous (sending agent waits for a response
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from the receiving agent) or asynchronous (sending agent does not wait for a response).

The communication is either directed (asymmetric) or undirected (symmetric). In an

undirected setting, an agent a sends to and receives updates from agent b. In a directed

setting, there is no symmetry in model update exchanges. Agent a sends an update to

agent b but does not necessarily receive updates from b. Information exchanged between

agents is most commonly in the form of model parameters. Depending on the approach,

receiving agent averages each received model update with local model parameters or

simultaneously averages multiple updates.

2.2. Batch Normalization

It has been demonstrated that Batch Normalization (BN) dramatically accelerates the

training of DNN models [27]. BN also makes the training process more resilient to large

learning rates and prevents the model gradients from exploding or getting stuck in the

local minima.

The tensor t at the input of the BN layer is renormalized as:

BN(t) = γ
t− µ√
σ2 + ϵ

+ β (1)

where the moving average (µ) and moving variance (σ2) are the BN statistics of each

channel computed across both spatial and batch dimensions while scaling (γ) and shifting

(β) are trainable parameters where all computations are performed along the channel axis.

An arbitrarily small constant ϵ is added to the denominator for numerical stability, while

an additional momentum parameter is used for updating the BN statistics. Let B denote

a mini-batch of size m, B = {t1....m}, then the moving mean and variance are updated

through the training process for each batch as follows:

µ = µ ∗momentum+
1

m

m∑
i=1

ti ∗ (1−momentum) (2)

σ2 = σ2 ∗momentum+
1

m

m∑
i=1

(ti − µB)
2 ∗ (1−momentum) (3)

The contributing factor of BN to overall DNN accuracy was evaluated by training
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only the BN layers on a randomly initialized model [46, 19]. The end model achieved a

surprisingly high test accuracy, suggesting that BN parameters have a remarkable repre-

sentational capacity. However, Batch Normalization in multi-agent learning is very much

an open area of research. It is unclear if the same optimization benefits will occur.

3. Related work

This paper focuses on agent collaboration and model training in a completely de-

centralized or peer-to-peer manner. However, in doing so, some of the approaches and

solutions proposed for FL are investigated and adopted as well.

3.1. Decentralized learning approaches

Decentralized approaches differ in communication, model aggregation method, syn-

chronicity, and P2P topology in which they can be applied.

Communication model. Under the communication model, both communication sym-

metry and synchronicity are considered so far. The most lenient is the asynchronous

directed communication [15, 6, 9, 49] since the sending agent does not wait for a re-

sponse. The receiving agent aggregates the received parameters with the local model.

Synchronous approaches [4, 22, 32] have a synchronization barrier that is passed once all

messages between agents are exchanged; thus, a communication direction does not have

a significant impact. Undirected asynchronous communication [36, 8, 58, 1, 53, 9, 10] im-

plies that a synchronization barrier does not bound the agent training process; however,

the communication between two agents is synchronous. When two agents communicate,

both must send and receive model updates before continuing the training process.

Model aggregation. Model updates are aggregated by averaging received model pa-

rameters with a uniform contribution. In gossip averaging approaches [15, 6, 9, 49] model

updates are averaged with local model parameters upon receiving the update. An agent

of a stochastic gradient push (SGP) approach [4, 22, 32] and decentralized parallel ap-
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proach [20, 36, 37, 38, 51, 54] calculates weighted averages of all received model updates

including local model parameters. All agents are presumed to have the same impact, so

the weights used in averaging are uniform.

Topologies. Ring topology is often presumed or only experimented with [37, 36, 38, 51].

More robust approaches allow the usage of any topology specified by the communication

matrix [20, 54, 4, 22, 9]. Studied gossip averaging approaches (apart from [9]) require

the knowledge of the whole network, and each agent only exchanges knowledge with one

random agent. Sparse peer-to-peer networks were formed in approaches proposed for

training linear models [53, 1, 5, 58, 8].

Our approach achieves convergence even in a sparse peer-to-peer network compared

to previous approaches. Before computing a new local model update, P2P-BN agent

can receive one or more updates. In case of lost messages or unbalanced communica-

tion, the learning process of an individual agent is not disturbed. Similar to GoSGD [6],

our approach averages the received model upon receiving the update message, unlike ap-

proaches such as [37, 20], which require receiving all neighbor messages before continuing

the learning process.

3.2. Federated learning approach in non-IID setting

FL approaches require relatively homogeneous (IID) data since the training on non-

IID data achieves slower convergence with lower accuracy and robustness [34]. Working

with non-IID data in FL was studied by applying personalization, meta-learning [3, 30,

18], and multi-task [26, 41] learning techniques. Model personalization was demonstrated

to boost the agents’ model accuracy [55, 17] by additionally training (fine-tuning) the

agent’s model after the FL training is completed. BN layers were also used in FL as a

form of local personalization, albeit with some adjustments regarding averaging the BN

parameters. In FedBN [35] and MTFL [41], each agent’s BN layers are stored locally

and are never shared. The BN layers are only used locally by an agent for training and

inference but are excluded from regular FL averaging. SiloBN [2] averages all model

parameters using the vanilla FL. However, the BN layer’s local statistics moving average

(µ) and moving variance (σ2) are stored only on agents, and only learned parameters,
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gamma (γ) and beta (β) are averaged.

The solution proposed in this paper adopts the model personalization technique by

training only the BN layers. If an agent can not improve the model accuracy, only the

BN layers are trained (fine-tuned).

4. The P2P-BN method

Network topology. We consider a set of N independent agents in a peer-to-peer network

topology training individual models in a shared learning task. Each agent communicates

with its peers based on the predefined communication graph G = (JNK, E,W ), where

JNK = {1, ..., N} is a set of all agents, E ∈ JNK× JNK is the set of edges, and W ∈ RN×N

is a nonnegative weighted matrix. Weight of edge (i, j) ∈ E is given by Wij with the

convention Wij = 0 if (i, j) /∈ E or i = j. Since P2P-BN approach does not consider

weighted averaging or trust between agents, we consider that agent i only sends messages

to agent j if Wij > 0, which means that agent i communicates with peers Ni = {j :

Wij > 0} without the knowledge of other peers in the network, and operates without

synchronisation with non-connected peers (Wij = 0). For a directed graph we use the

terms in-neighbour if (i, j) ∈ E and out-neighbor if (j, i) ∈ E. In practice, this presumed

communication graph can be replaced by a random peer sampling service (RPS) [29].

Local model training. Each agent aims to train its local model with the local dataset

Di and information received from its peers to minimize its loss function Fi. Each agent

trains a local model by calculating mini-batch gradient
`
Fi(xi; ξi), ξi ∼ Di and updating

its local model xi = xi − ηFi(xi; ξi), ξi ∼ Di for E epochs over its local training dataset,

where η denotes agent’s personal learning rate. Let ∥ xi ∥ denote model xi with frozen

non-BN layers, then the agent performing local personalization on model xi is formed as

xi = xi − ηFi(∥ xi ∥; ξi), ξi ∼ Di for E epochs. When the agent receives a model xj from

a peer, a new model xi is formed as xi =
xi+xj

2
.

Communication model. Our proposed approach builds upon a gossip averaging method

[28, 9] combined with an additional on-device personalization technique (fine-tuning).
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Figure 3: The figure shows the learning process of three agents using the P2P-BN method
in an unbalanced topology in which the agent A2 is neighboring with agents A1 and A3.
Imbalanced topology is chosen to demonstrate receiving multiple model updates before
continuing the learning process (of the agent A2). At the start of the learning process,
all agents first train their model (step 1), followed by the communication step. In the
example presented above, the agent A2 receives models from peers A3 and A1 (steps 2
and 3). The agent A2 then sends the model to its peers, agents A1 and A3, who then
average their model with the received model (step 4). Once all messages are exchanged,
agents train their model (step 5), and the described process is repeated until the stopping
condition is met.

89



Each agent has its local copy of the DNN model xi and a local dataset Di. Messages

exchanged between agents only contain the sending agent’s model parameters. The whole

system follows a shared choreography where each agent will: (I) upon joining the network,

initialize a model and prepare the local dataset for training, (II) train its model for E

epochs on the local dataset, (III) asynchronously send the local model xi to a set of

connected peers, (IV) wait for at least one update from other peers and go back to step

II. An example of model exchanges between three P2P-BN agents is shown in figure 3.

Upon receiving a model from a peer, the agent performs model averaging without send-

ing any information back, which differs from the pairwise aggregation methods [28, 9].

Model averaging will be repeated for every model received. Given the non-IID assumption,

agents can differ in the quantity of local data. Agents with scarce data will most likely

degrade their models after the local training step due to low representation in training

examples. If the agent cannot improve the local model, the agent will freeze all non-BN

layers. Freezing the non-BN layers and training only the BN layers is our proposed per-

sonalization technique that we refer to as the BN fine-tuning step. The reasoning behind

this improvement is the previously-demonstrated remarkable representational capacity of

BN layers [19]. Similarly to the early stopping technique [42], a validation dataset is used

to determine when the layers need to be frozen/unfrozen.

Pseudo-code shown in algorithm 1 details the global agent behavior as it was performed

in the simulation environment:

• at the start of the learning process, all agents initialize their models with identical

model parameters,

• in each iteration, one of the agents that received at least one update from the last

active state is locally trained,

• when an agent is trained, the agent performs the training step, followed by the

model evaluation on validation data,

• if the validation accuracy is not improved, the model freezes non-BN layers, and

vice-versa; if the validation accuracy is improved, the model unfreezes all the non-

BN layers.
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Model initialization. Since model averaging is performed, all agents should initialize

their models with identical initial values [49].

Algorithm 1 Agents training simulation pseudo-code

1: function Train(A,W,E)
2: A: agents
3: W: communication matrix
4: E: number of epochs to perform locally
5: Model(A) = 0 ▷ Initialize all agents models to identical model parameters
6: repeat
7: ai = RandomActiveAgent(A) ▷ Random agent which received at least

one update from last active state
8: LocalTrain(ai, E)
9: if IsModelImproved(ai) then

10: UnfreezeAllLayers(ai)
11: else
12: FreezeNonBNLayers(ai)

13: for aj in Neighbors(W,ai) do
14: Model(aj) = AverageModel(aj, ai)

15: until Maximum iteration reached

5. Evaluation

The evaluation of the proposed P2P-BN approach was carried out according to the

following research questions:

• RQ1: What is the BN persionalization effect on P2P-BN performance?

• RQ2: How does P2P-BN compare to the baselines in different topologies, with and

without BN layers?

• RQ3: How does P2P-BN scale according to the number of agents compared to the

baseline approaches?

The following subsection will describe the methodology applied to answer these re-

search questions, together with the results and discussion.
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5.1. Methodology

Dataset. The evaluation was performed on Reddit [11] and StackOverflow [47] datasets

consisting of unique users and their comments. Each comment can have multiple sen-

tences. In the experiments, a single agent dataset consisted of all comments from a

unique user. Furthermore, agent datasets are divided into training, validation, and test

subsets in a 60%-20%-20% split. Following the experiments from previous work [21, 31,

55, 45, 48], the vocabulary size was set to 10,000 most common words, which resulted in

10,000 classes on model output. Other words are characterized as an out-of-vocabulary

token and are not considered when calculating prediction accuracy. Sentences are broken

down into sequences of 10 words, and the model goal is to predict the next word, which

gives us a classification problem. Therefore, the context in which the word appears and

possible word variations that could also be acceptable solutions are not considered. For

example, the sentence ”He is walking down the street” can be broken into five sequences,

and all sequences need to be of a fixed length (10 words in experiments). Padding is

added on the left-hand side of sequences shorter than ten words. Figure 4 shows one of

the sequences that could be formed from the sentence to predict the next word. Even

though multiple solutions could be considered correct in the given context, only the word

”down” is correct.

Figure 4: One of the sequences that could be formed from the sentence ”He is walking
down the street”. Only the word ”down” is correct, even though multiple words could be
considered correct in this context.

Each Reddit agent, on average, trains on 654 examples, with around 80% of agents

having less than 700 examples. Following our train-test split, each Reddit agent, on

average, has 222 test examples, and around 77% of agents have less than 230 test examples.

StackOverflow agents, in general, have a higher number of examples. Each StackOverflow
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agent has 1134 train, 378 validation, and 378 test examples, with around 74% of agents

having less than the average number of train, validation, and test examples.

Non-IID property. To evaluate the degree of non-IID property between the agents, we

used the Jensen-Shannon divergence (JSD) metric. JSD is a method of measuring the

similarity between two probability discrete distributions:

JSD(P∥Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M), (4)

M =
1

2
(P +Q). (5)

JSD metric is chosen because it satisfies the three axioms: identity of indiscernibles

(d(x, y) = 0 ⇔ x = y, symmetry (d(x, y) = d(y, x)), and triangle inequality (d(x, y) ≤

d(x, z) + d(z, y)) for all x, y, z ∈ X. Metrics such as Kullback-Leibler (KL) divergence or

Cross-Entropy do not satisfy the symmetry axiom and, therefore, could not be applied

for our use case. Suppose we denote the label probability distributions of two training

datasets with P and Q and expressM as the mid-point of the probability vectors P and Q.

We can express JSD using the KL divergence DKL with formula 4. The distance yielded

by the metric is located within the [0, 1] range. Slight divergence (close to 0) means

that the distribution of classes in both datasets is very similar. In contrast, significant

divergence (close to 1) implies that the distribution of classes is very different.

To express the non-IID degree of the Reddit and StackOverflow datasets, the JSD

metric was applied to agents’ datasets and compared the results with the well-known

MNIST dataset [16] used in numerous previous P2P ML studies [15, 49, 8, 13, 20]. We

measured JSD in the following settings: 1) IID data setting [40] that distributes all

classes uniformly across different agents; 2) pathological non-IID data setting [40] that

partitions the dataset so that each agent gets only two classes (out of 10); 3) practical

non-IID data setting [26] that partitions the data between agents so that every agent

has data from all the classes, but with different distributions; some classes have a higher

probability than other; 4) the Reddit dataset; 5) the StackOverflow dataset. Distance

matrices were sorted before plotting to represent clusters of agents with similar class

distributions more accurately. Figure 5 visualizes the JSD distances between agents’

datasets for the Reddit, StackOverflow and MNIST datasets. Average JSD results are
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Figure 5: Distance matrices of Jensen-Shannon divergence between agents’ local dataset
label distribution for MNIST in a: a) IID data setting, b) pathological non-IID data
setting, and c) practical non-IID data setting. All MNIST settings were partitioned into
shards of 100 agents, and five groups were created for the practical non-IID setting.
For the Reddit (d) and StackOverflow (e) datasets, one hundred agents were randomly
sampled from the agents used in the experiments. Dark blue represents a substantial
similarity between agents’ datasets, while bright yellow suggests substantial differences
between agents’ datasets.
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also given in table 1 and show that the Reddit and StackOverflow dataset heterogeneity

levels are between the practical and pathological non-IID datasets. For the MNIST (IID),

the JSD distances between agents are close to zero, resulting in a single cluster of agents.

The pathological non-IID MNIST matrix displays substantial differences between agents’

datasets. However, clusters forming around the diagonal axis can still be observed. In

the practical non-IID MNIST matrix, it is noticeable that there are indeed differences

between agents, but only in the form of five clusters, inside which the inner-similarities

between agents are very high (IID). Reddit agents formed numerous visible clusters, while

StackOverflow agents formed clusters with lower heterogeneity levels than Reddit agents.

The inner-cluster differences of Reddit agents are more considerable, but the differences

between clusters are lower compared to practical non-IID dataset.

Table 1: Average Jensen-Shannon divergence metric across all agents’ datasets. The
MNIST dataset is partitioned into shards of 100 agents for all three settings, and five
groups were created for the practical non-IID setting. One hundred Reddit and Stack-
Overflow agents’ datasets were randomly sampled from all agents used in the experiments.

Dataset Jensen-Shannon divergence
MNIST (IID) 0.0057
MNIST (pathological non-IID) 0.8116
MNIST (practical non-IID) 0.5229
Reddit 0.6633
StackOverflow 0.5687

Metrics. Average User model Accuracy (UA) [41] metric was used to measure the overall

learning process performance. UA measures the average accuracy across all agents on their

local test data and can be expressed as:

UA =
1

n

n∑
i=1

acci (6)

where acci is the prediction accuracy of model i on local test dataset i (both owned by

agent i). Prediction accuracy is calculated as the fraction of correct predictions (TP and

TN) over total predictions (TP, TN, FP, and FN):

acci =
TPi + TNi

TPi + TNi + FPi + FNi

. (7)

Agent model description. Model architecture applied on agents is adopted from [45,

48], however, the Long Short-Term Memory (LSTM) [24] layer was replaced with a recur-
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rent neural network layer called Gated Recurrent Unit (GRU) [14]. The adopted model is

evaluated with and without BN layers (see table 2), termed as BN and non-BN models.

Table 2: Model architectures used in the experiments.

BN model Non-BN model

Embedding (100) Embedding (100)

GRU (100) GRU (100)

BatchNormalization(200) -

Dense (100) Dense (100)

BatchNormalization(200) -

Dense (10,002) Dense (10,002)

Baseline training methods. We compared our proposed P2P method against several

prior methods: (I) D2 [51] as a representative of the parallel stochastic gradient descent

family (e.g., [37, 36, 20]) in which the optimal topology is an undirected ring graph

(doubly stochastic symmetric); (II) SGP [44] from the stochastic gradient push family

(eg. [4, 22]); (III) GoSGD [6] from decentralized gossip exchange approaches (eg. [15]).

Approaches D2 and SGP are simulated by synchronously training all agents using a uni-

formly mixing communication matrix. A uniformly mixed communication matrix implies

that all received models from peers are equally important. GoSGD is also simulated by

synchronously training all agents. In all compared methods, agents first perform a local

training step, followed by a communication step, repeating these two steps in a loop (see

figure 6). We modified the communication behavior of the GoSGD approach so that the

agent chooses its neighbor(s) based on the tested topology. The probability of sending a

model to each peer is set to 0.1 in all experiments. We simulate the P2P-BN approach by

randomly and uniformly choosing one of the eligible agents. Eligibility is met by the cri-

teria given in algorithm 1: the agent has received at least one model update since the last

training step. The chosen agent then performs the local training step and communication

step.
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Figure 6: Synchronous agent training, in which all agents first perform a local training
step, followed by a communication step, repeating these two steps in a loop.

5.2. Experiments

For all simulated approaches, the batch size was set to 50, and the learning rate

to 5 × 10−3. Depending on the experiment, the BN and the non-BN model was used.

Unless differently stated, the BN momentum was set to 0.9, and parameters for scaling

(γ) and shifting (β) were ignored (not trained). In the experiments, five separate runs

were conducted for each approach-topology-communication combination, with a new set

of agents for each run.

An ablation study was performed first to understand the proposed BN fine-tuning

technique. The BN fine-tuning technique was then used in all following experiments with

P2P-BN. The following two experiments analyze performances in the ring and sparse

topologies and investigate the scaling properties of both P2P-BN and baseline methods.

BN fine-tuning ablation study. To answer RQ1 and demonstrate the impact of

the proposed BN fine-tuning on the overall learning process, we conducted experiments

on P2P-BN with and without the BN fine-tuning technique, noted as test and control,

respectively. The BN model is used in all simulations, and the number of agents involved

was 100 and 300, connected by a directed/undirected sparse graph with three neighbors.

Figure 7 shows that using BN fine-tuning improves agents’ learning ability in 100 and 300

agent settings, regardless of whether the communication is directed or undirected.

The maximum achieved UA of each run was selected for both test and control ex-

periments and analyzed using the Student t-test. The Student t-test was performed to
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Figure 7: Test UA of 100 and 300 agents for P2P-BN in directed (a) and undirected (b)
fixed sparse graph with or without the BN fine-tuning technique for the Reddit dataset.

statistically confirm the difference between the UA achieved in the test and control. For

both 100 and 300 agent groups, the p-value was p < 2 × 10−2, suggesting statistical

significance. Results are summarized in Table 3.

Table 3: Maximum UA obtained with and without the BN fine-tuning technique for the
100 and 300 agent groups in a directed and undirected sparse topology. Training with the
BN fine-tuning (BN-TF) technique achieved a relative top UA increase of around 20% for
the Reddit dataset and around 15% for the StackOverflow dataset.

Dataset
# of
agents

BN-FT Directed Undirected

Reddit
100 No 8.32 7.55
100 Yes 9.69 (+16.4%, p < 3× 10−3) 9.10 (+20.5% , p < 5× 10−4)
300 No 8.35 7.67
300 Yes 10.03 (+20.1%, p < 7× 10−6) 9.33 (+21.6%, p < 1× 10−5)

StackOverflow
100 No 10.89 9.90
100 Yes 12.49 (+14.7%, p < 2× 10−2) 11.82 (+19.4% , p < 5× 10−5)
300 No 11.92 10.29
300 Yes 13.16 (+10.4%, p < 2× 10−2) 11.92 (+15.8%, p < 5× 10−5)

Batch Normalization effect on baseline approaches. To study the effect of using

the BN model in all approaches and answer RQ2, we simulated the P2P training process

of 100 agents in the ring and sparse topologies. The BN and the non-BN model were used

on D2, GoSGD, (PushSum) SGP, and P2P-BN approaches in a directed and undirected

ring topology (see Figure 2) for 100 agent epochs. Note that when the non-BN model was

used in the P2P-BN method, BN fine-tuning was omitted. All experiments start with
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identical agent model parameters and identical agent peer connections. Additionally,

P2P-BN was evaluated and compared to the baseline approaches on both undirected and

directed, fixed and time-varying sparse network topologies. The number of neighbors was

set to three to prevent agent separation into groups. The communication matrix was

altered every five epochs for the time-varying network scenario. Figure 8 shows graph

topology used in fixed communication setting. In the time-varying setting, similar graphs

were produced but with different peer connections.

Undirected sparse Directed sparse

Figure 8: Fixed sparse undirected and directed graph used for the evaluation, comprising
of 100 agents with three in- and out-neighbors.

Ring topology. Ring topology setting demonstrated that all approaches benefit

by using the BN model regarding convergence speed and maximum UA (see figure 9).

Directed graphs also demonstrated slightly better accuracies than undirected versions.

P2P-BN achieved superior convergence speed and maximum UA compared to any baseline

approach and benefited the most from the directed graph in the BN setting. In the BN

model experiments, compared to the closest second-ranked GoSGD, P2P-BN achieved

a mean relative top UA increase of 19.9% for the Reddit dataset and 13.9% for the

StackOverflow dataset. Table 4 summarizes the results. For all approaches, BN layers

enabled up to four times faster convergence.

Sparse topology. Figure 10 shows the simulation results in the sparse topologies.

D2 and SGP perform similarly, producing similar results in both directed and undirected

communication settings. GoSGD demonstrates a slight increase in UA, and P2P-BN

significantly outperforms all other approaches, producing the best results in a directed

communication setting. Table 5 summarizes the average number of exchanged messages
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Table 4: The average number of exchanged messages per epoch and the average top UA
for the Reddit and StackOverflow datasets. Averages are calculated by averaging data
from all runs conducted in the ring topology experiments using the BN model.

Dataset Approach # of messages Test UA

Reddit

D2 2272 6.47%

GoSGD 226 6.57%

SGP 2327 6.38%

P2P-BN 149 7.88%

StackOverflow

D2 3640 8.24%

GoSGD 362 8.67%

SGP 3642 8.20%

P2P-BN 148 9.87%
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Figure 9: Test UA of 100 agents for D2, GoSGD, SGD, and P2P-BN in: undirected ring
topology using the non-BN (a) and the BN (b) model; directed ring topology using the
non-BN (c) and the BN (d) model for the Reddit dataset.
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per epoch and averaged maximum accuracies across all runs in this experiment. In sparse

topology experiments, P2P-BN, compared to the closest second-ranked GoSGD, achieved

a mean relative top UA increase of 32.9% for the Reddit dataset and 26.6% for the

StackOverflow dataset.
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Figure 10: Test UA of 100 agents for D2, GoSGD, SGD, and P2P-BN in: fixed undirected
(a) and directed (b) sparse topology; varying undirected (c) and directed (d) sparse topol-
ogy for the Reddit dataset.

Finally, we also performed a training variant where agents did not exchange models.

On average, agents reached a maximum UA of 5% using the Reddit dataset and 6% using

the StackOverflow dataset. When training one single model on all training data pooled,

the model, on average, achieved a maximum accuracy of 12.8% using the Reddit dataset

and 15.5% using the StackOverflow dataset.

Evaluating scaling properties. To investigate RQ3, the scaling properties of P2P-
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Table 5: The average number of exchanged messages per epoch and average top UA for
the Reddit and StackOverflow datasets. Averages are calculated by averaging data from
all runs conducted in the sparse topology experiments.

Dataset Approach # of messages Test UA

Reddit

D2 4544 6.96%

GoSGD 452 7.47%

SGP 4547 6.89%

P2P-BN 298 9.93%

StackOverflow

D2 7281 9.10%

GoSGD 725 9.58%

SGP 7284 9.07%

P2P-BN 299 12.13%

BN, simulations with 100 and 500 agents were conducted. An additional simulation

was carried out for P2P-BN in a 1000 agent setting. The goal of scaling evaluation

was to study whether increasing the number of agents will hamper individual agents’

learning process, i.e., will the network take more time to synchronize. A fixed directed

sparse topology was used for all experiments with three in- and out-neighbors. In this

simulations, the momentum of BN layers was increased exponentially, using the formula:

min(0.9 ∗ 1.01(epoch/5), 0.99), where epoch is the number of local epochs performed by an

agent. Increasing momentum allows each agent a more expansive optimal function search

space in the early stages of the learning. However, it narrows this search space every

time an agent trains its local model for an epoch. The optimal strategy for increasing

momentum should be studied in future research and applied individually rather than

uniformly across all agents. As figure 11 shows, D2 and SGP do not show any significant

increase in UA, while GoSGD achieves a slightly better UA with 500 agents. P2P-BN

agents benefit the most from a bigger network size while keeping the number of messages

constant due to a fixed number of neighbors in all simulations. Table 6 summarises the

average top UA achieved in the 100 and 500 agent simulations. The Student t-test shows

no statistically significant differences in average top UA between the 100 and 500 agent

simulations for D2, GoSGD, and SGP (p > 0.29).
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Figure 11: Test UA with varying agent count for D2, GoSGD, SGP, and P2P-BN on a
fixed directed sparse topology with three in- and out-neighbors using the BN model for
the Reddit and StackOverflow datasets.

Table 6: Average top accuracies for D2, GoSGD, SGP and P2P-BN in the 100 and
500 agent setting on a directed sparse topology for the Reddit (a) and StackOverflow
(b) datasets. P values obtained through the Student t-test suggest that only P2P-BN
displays a statistically significant difference between the 100 and 500 agent simulations.

Dataset Approach Test UA of 100 agents Test UA of 500 agents
Reddit

D2 6.49 6.62 (+2.0%, p > 0.72)
GoSGD 7.26 7.50 (+3.31%, p > 0.91)
SGP 6.42 6.57 (+2.34%, p > 0.91)
P2P-BN 9.82 10.72 (+9.16%, p < 0.035)

StackOverflow
D2 8.67 9.26 (+6.81%, p > 0.55)
GoSGD 9.40 10.07 (+7.13%, p > 0.44)
SGP 8.56 9.20 (+7.48%, p > 0.29)
P2P-BN 12.01 13.65 (+13.66%, p < 0.084)
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6. Limitations

Further studies are needed to evaluate P2P-BN on more IID and non-IID datasets

and different model architectures. Although P2P-BN performs well on non-IID data,

some limitations should be addressed. Due to the proposed fine-tuning method, our ap-

proach requires BN layers in agent models. Furthermore, P2P-BN currently only supports

training on homogeneous models and does not address the possibility of malicious agents

looking to degrade peers’ models. A way towards tackling malicious agents could be

based on Byzantine resilience [9]. Supporting heterogeneous models could be solved by

using knowledge transfer techniques from FL approaches [12, 33]. Standard differential

privacy techniques could be a good tool for ensuring an agent’s privacy, with an additional

study on trade-offs between privacy and model accuracy/knowledge. Besides investigating

the need for heterogeneous models, there is a need to address the possible performance

inequalities between the agents.

7. Conclusion

In this paper, we considered the problem of decentralized learning on a next-word

prediction task given non-IID data over a network of connected agents in different topolo-

gies. We introduced and validated a novel asynchronous variant of the gossip averaging

approach, P2P-BN, and demonstrated the effectiveness of BN fine-tuning in normalizing

non-IID data trained models across agents. The BN fine-tuning technique demonstrated

substantial performance gain when applied in P2P-BN compared to the baseline ap-

proaches. The evaluation was performed on a rich set of simulations in different static

and dynamic topologies. For the next word prediction task, simulations showed that P2P-

BN, on average, achieves a mean relative top accuracy increase of 16.9% in ring (19.9%

for Reddit, 13.9% for StackOverflow) and 29.8% in sparse (32.9% for Reddit, 26.6% for

StackOverflow) communication topologies compared to the best baseline approach. Fu-

ture research will focus on establishing connections between agents, specifically, studying
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whether grouping agents based on their common interests and data similarity is beneficial

or detrimental to their learning ability. Furthermore, it would be interesting to inves-

tigate the trade-offs between local computation and communication to find the optimal

agent configuration parameters for P2P-BN. The additional research direction also in-

cludes evaluating more realistic scenarios: dynamic agent arrivals and churn levels, model

heterogeneity, and how to efficiently use new data points acquired by the agents.
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[5] Aurélien Bellet et al. “Personalized and Private Peer-to-Peer Machine Learning”. In:

Proceedings of the Twenty-First International Conference on Artificial Intelligence

and Statistics. Ed. by Amos Storkey and Fernando Perez-Cruz. Vol. 84. Proceedings

of Machine Learning Research. PMLR, Apr. 2018, pp. 473–481. url: https://

proceedings.mlr.press/v84/bellet18a.html.

105

https://doi.org/10.1109/LSP.2018.2859596
https://doi.org/10.1007/978-3-030-60548-3_13
https://doi.org/10.1007/978-3-030-60548-3_13
https://doi.org/10.1007/978-3-030-60548-3_13
https://proceedings.mlr.press/v97/assran19a.html
https://proceedings.mlr.press/v97/assran19a.html
https://proceedings.mlr.press/v84/bellet18a.html
https://proceedings.mlr.press/v84/bellet18a.html


[6] Michael Blot et al. “Distributed optimization for deep learning with gossip ex-

change”. In: Neurocomputing 330 (2019), pp. 287–296. issn: 0925-2312. doi: https:

//doi.org/10.1016/j.neucom.2018.11.002. url: https://www.sciencedirect.

com/science/article/pii/S0925231218313195.

[7] Michael Blot et al. “Gossip training for deep learning”. In: (Nov. 2016).

[8] Karim Boubouh et al. “Robust P2P Personalized Learning”. In: 2020 International

Symposium on Reliable Distributed Systems (SRDS). 2020, pp. 299–308. doi: 10.

1109/SRDS51746.2020.00037.

[9] Amaury Bouchra Pilet, Davide Frey, and François Täıani. “Robust Privacy-Preserving
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[58] Valentina Zantedeschi, Aurélien Bellet, and Marc Tommasi. “Fully Decentralized

Joint Learning of Personalized Models and Collaboration Graphs”. In: Proceedings

of the Twenty Third International Conference on Artificial Intelligence and Statis-

tics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings of Machine

111

https://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v80/tang18a.html
https://openreview.net/forum?id=TVHS5Y4dNvM
https://openreview.net/forum?id=TVHS5Y4dNvM
https://proceedings.mlr.press/v54/vanhaesebrouck17a.html
https://proceedings.mlr.press/v54/vanhaesebrouck17a.html
http://jmlr.org/papers/v22/20-147.html
http://jmlr.org/papers/v22/20-147.html
http://arxiv.org/abs/1910.10252
http://arxiv.org/abs/1903.03934
http://arxiv.org/abs/1903.03934
https://doi.org/10.1109/MNET.011.2000295
https://doi.org/10.1109/MNET.011.2000295


Learning Research. PMLR, Aug. 2020, pp. 864–874. url: https://proceedings.

mlr.press/v108/zantedeschi20a.html.

112

https://proceedings.mlr.press/v108/zantedeschi20a.html
https://proceedings.mlr.press/v108/zantedeschi20a.html


B. Multi-task peer-to-peer learning using an encoder-

only transformer model
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1. Introduction

A substantial amount of decentralized data is generated daily on end devices such

as mobile phones or laptops. Keeping data decentralized has several potential benefits,

including increased privacy and security for users and reduced reliance on a central au-

thority for data storage and processing. An end device’s private data may contain valuable

information that can be used to train deep neural network models, either through Fed-

erated Learning [22] or peer-to-peer learning [6]. Compared to the Federated Learning

approach, which orchestrates the learning process using a central server, peer-to-peer al-

lows multiple devices to train machine learning models collaboratively without a central

authority. While both approaches share the models, the private data never leaves an end

device known as an agent.

Agents’ data heterogeneity affects the collective learning process, slowing it down and

resulting in sub-optimal models [39, 20]. To mitigate these challenges, significant ad-

vances were made to enable multi-task learning [27, 40, 24, 34, 7]. In multi-task learning,

agents are divided into clusters based on model and data similarity conditions. Clustering

reduces data heterogeneity, leading to better model convergence and learning outcomes.

In an extreme case where clusters are reduced to a single agent, this technique can be

considered a personalization technique [28]. Consider the speech recognition task, where

voice samples are stored at the agent level and vary depending on the language, accent,

pitch, etc. Solving the speech recognition problem through multi-task learning would im-

ply that the clusters would be organized according to similar accents or pitch. However,

all agents are learning to solve a common problem, e.g. speech recognition.

In a previous study [32], we addressed the problem of data heterogeneity by developing

a personalization technique that, in combination with Batch Normalization (BN) layers

[13], enabled agents to achieve faster convergence and higher top accuracy on a single

task. This paper studies an approach of collaboratively training agents in a peer-to-peer

network that can learn two distinct Natural Language Processing (NLP) tasks: masked-

token prediction (MTP) as the masked language modeling task, and the named-entity

recognition (NER) as a token classification task. The hypothesis is that agents can boost

the performance of their local models by collaborating with agents learning a completely
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different task within the same data modality. Encoder-only transformer architecture used

in the BERT [9] model is used as a model base for both tasks. It is well established

that pre-training BERT models and fine-tuning for a specific task improves the model’s

performance [9], which this research strives to apply in a peer-to-peer setting. This

research uses the encoder’s ability to store the common knowledge shared among all

agents, regardless of the assigned agent cluster. The task-specific elements of the models

are shared only within the cluster. The output generated by the attention layers in the

encoder is forwarded to a task-specific classifier. For this purpose, this research suggests

a peer-to-peer multi-task learning approach for collaboration between agents learning

distinctly different NLP tasks. The contributions can be summarized as follows:

• a multi-task method for agent collaboration on distinct NLP objectives: masked-

token prediction and named-entity recognition,

• a technique for constructing a network topology that establishes connections among

agents in different objective clusters,

• a method for the strategical training of shared model layers for faster convergence.

To ensure the reproducibility of our results, our code is publicly available at https:

//github.com/fipu-lab/p2p_bn.

The rest of this paper is organized as follows. Section 2 provides more details on the

BERT transformer model and decentralized learning. Section 3 reviews and describes

related work. The multi-task method is presented in Section 4. Section 5 presents the

evaluation methodology and experimental results. The limitations are discussed in Section

6, and Section 7 concludes the paper.

2. Background

This section introduces the concepts of decentralized learning and the BERT trans-

former model.

115

https://github.com/fipu-lab/p2p_bn
https://github.com/fipu-lab/p2p_bn


2.1. BERT transformer model

The BERT model, or Bidirectional Encoder Representations from Transformers, is a

powerful language model developed by Google researchers in 2018/2019 [9]. BERT is

designed to handle natural language processing (NLP) tasks such as language translation,

question answering, and language generation. It has achieved state-of-the-art results on

a wide range of benchmarks. One of the key features of BERT is its use of transformer

architecture, which allows the model to process long-range dependencies in language ef-

fectively. BERT also uses self-attention mechanisms [37], which allow the model to attend

to different input parts simultaneously and weigh their relative importance. Self-attention

helps the model capture contextual relationships between words in a sentence and use this

information to make more accurate predictions. In addition to its impressive performance

on natural language processing tasks, BERT has also been widely adopted for various

other tasks, including sentiment analysis [3] and named entity recognition [11]. Different

sizes of BERT models can be constructed by varying the number of attention heads, the

number of hidden layers of transformer blocks, and hidden size [36]. The hidden size

refers to the number of units in the transformer’s self-attention layers. Figure 1 shows

the architecture of the BERT model. This study utilizes the encoder-only transformer

architecture as used in the BERT model. The encoder’s sequence output is processed and

forwarded to the final output layer for a specific task (MTP or NER), i.e., each agent owns

only one encoder model and one final task-specific output layer. The encoder architecture

employed in this study is derived from the BERT-Tiny [36].

2.2. Decentralized learning

Agents adhere to a network topology in a decentralized network and only exchange

messages with their neighbors or peers. In most studies, the network topology is prede-

termined, such as ring, sparse, or fully connected topology. A sparse topology is the most

lenient, as any rule does not bind it; agents are randomly connected and only limited

by the number of neighbors they can have. In directed (asymmetric) communication, an
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Figure 1: BERT model architecture.
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agent receives messages from one set of peers and sends messages to another set of peers

[4, 32]. Undirected communication is used when an agent sends and receives messages

from the same set of peers [19, 33]. In most cases, information relayed between agents are

the learned model parameters. Incoming model parameters are commonly aggregated by

averaging with local model parameters or aggregating upon receiving all messages [5, 2].

3. Related work

Multi-task learning has been considered for peer-to-peer and Federated Learning (FL).

In FL, the most commonly studied approach is keeping one model part or module stored

locally on the agents while sharing the other part with the server [1, 17, 28, 21, 23]. By

splitting the model, agents own a part of general and task-specific knowledge. Other

studies divided agents into groups based on the similarity of agents’ models [12], and only

the models within a certain group are aggregated to form a new group-global model.

A very lenient approach was studied in [7] for FL and peer-to-peer, where any part

of the neural model can be shared with peers. The authors evaluated their approach by

classifying handwritten characters using the FEMNIST [8] dataset. The FEMNIST char-

acter images are grouped by the author of the handwritten characters, and data bound

by one author was assigned to one agent as the training data. The experiments in the

study demonstrated that the optimal percentage of the model shared is around 80% for

maximum accuracy, but with the emphasis that the number of performed mini-batch up-

dates is more impactful than the averaging level. A relative accuracy increase of around

9% was achieved with the 80% averaging level compared to the 100% averaging level.

Taylor et al. [34] utilized a multi-task approach for predicting tomorrow’s mood, stress,

and health outcomes. The proposed method divides the model into two distinct com-

ponents: a shared part and multiple task-specific parts. User data was organized into

clusters based on their personality and gender. The single shared part of the model ex-

tracted features pertinent to all clusters, while the task-specific parts generated tailored

predictions for each cluster. Compared to the single-task baseline, multi-task learning

improved the accuracy by around 12%. In a peer-to-peer environment, Mohammadi et
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al. [24] implemented a system where individual agents retained specific expertise through

local skills while simultaneously sharing general knowledge with nearby agents. This col-

laborative approach allowed agents to benefit from knowledge exchange while maintaining

their proficiency in solving localized data, improving overall performance.

Additionally, multi-task learning can be enabled by strategically manipulating agent

connections and effectively clustering agents with comparable tasks. Zantedeschi et al.

[40] introduced a method to enable the dynamic formation of peer-to-peer connections

by exploiting the resemblance among agents’ local linear models using empirical loss on

the agent’s local dataset. Building on this idea, several other studies have further applied

this approach to neural networks, yielding better model performance in scenarios with

heterogeneous data distribution [25, 42, 16, 18, 41]. These scenarios encompass diverse

image rotations, varying label semantics, and disparate data distributions, with most

experiments conducted using the CIFAR-10 dataset [15].

All of the mentioned studies divide agents based on the heterogeneity of their data,

considering one or a group of agents as a separate task. However, the objective is always

to learn one task for all agents (e.g., handwritten character classification). Our presented

approach allows for distinct groups of agents to collaboratively learn different NLP tasks,

such as masked-token prediction (MTP) and named-entity recognition (NER), and for an

agent group learning one task to enhance its learning ability through collaboration with

a group of agents learning another task.

4. Multi-task learning

The proposed technique uses the P2P-BN [32] approach as the peer-to-peer gossiping

method. An early stopping technique that uses Batch Normalization layers was proposed

for P2P-BN as a personalization technique, which was omitted for our approach since our

models do not contain any BN layers. P2P-BN considers a set of N independent agents

communicating with each other. Each agent has its local model mi, local dataset Di,

and is solving the task Ti where type(Ti) ∈ {MTP,NER}. Each model mi is comprised

of the encoder-only transformer (referred to as the encoder layer) and additional task-
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specific layers (see Figure 2). The encoder layer is shared between all agents, while the

task-specific layers are shared only between agents within the same task T . Note that an

agent only trains to solve one task Ti but utilizes the multi-task collaboration to achieve

higher local model accuracy.

Figure 2: Architecture of MTP and NER models.

Network topology. Messages exchanged between agents contain the sending agent’s

model parameters mi, and the receiving agent j decides how to aggregate the received

parameters with its model mj based on the sending agent’s task Ti and own task Tj. In a

set of N agents, each agent only communicates with its peers based on the predetermined

communication graph G = (JNK, E,W ), where JNK = {1, ..., N} is a set of all agents,

E ∈ JNK × JNK is the set of edges, and W ∈ RN×N is a non-negative weighted matrix.

Weight of edge (i, j) ∈ E is given by Wij with the convention Wij = 0 if (i, j) /∈ E or i = j.

As in P2P-BN, agent i only sends messages to agent j if Wij > 0, which means that agent

i communicates with peers Ni = {j : Wij > 0} without knowledge of other peers in the

network and operates without synchronization with non-connected peers (Wij = 0). An

agent may have different in-neighbour (i, j) ∈ E and out-neighbor (j, i) ∈ E connections

in a directed graph. The hypothesis is that the number of connected peers from another

task |{Wij > 0 ∧ Ti ̸= Tj}| should be limited to a specific portion of the total number of

connected peers |{Wij > 0}| to achieve better results. We denote the parameter PT as a

fraction of connected peers from a different task and the total number of connected peers:

PT =
|{Wij > 0 ∧ Ti ̸= Tj}|

|{Wij > 0}|
(1)
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Local model training. An agent aims to train its local model by leveraging its local

dataset Di and updates received from its peers to try to minimize its loss function Fi

for a specific task Ti. An agent trains its local model by performing mini-batch gradient

updates to its local modelmi = mi−ηFi(mi; ξi), ξi ∼ Di for E epochs over its local training

dataset, with η denoting agent’s learning rate. When an agent i receives an update from

an agent j, a standard model averaging mi =
mi+mj

2
is performed if type(Ti) = type(Tj).

Otherwise, only the encoder layer of the model is averaged m
(encoder)
i =

m
(encoder)
i +m

(encoder)
j

2
,

where m
(encoder)
i and m

(encoder)
j denotes only the encoder layer of the mi and mj models,

respectively. An additional introduced technique is slowing down the shared layer learning

in a setting where an agent has a neighborhood with a different type of tasks: if type(Ti) ̸=

type(TJ) and only the encoder layer is averaged, the receiving agent freezes the encoder

layer for the next training round. Let ∥mi∥ denote model mi with frozen encoder layer,

then an agent i performs the next local training round on model mi as follows: mi =

mi − ηFi(∥mi∥; ξi), ξi ∼ Di for E epochs. The reasoning behind freezing the encoder

layer upon receiving updates from a different task is that the encoder layer represents

a shared common knowledge of the network. Agents slowly reach a consensus over the

shared encoder layer by only updating the task-specific layers and not training the encoder

layer. It is important to note that freezing the encoder layer does not occur in every

training cycle. An agent may receive updates from its peers who are learning the same

task, in which case there is no freezing of the encoder layer. This technique also acts

as personalization by only training a part of a model (task-specific layers). All model

weights should be initialized for optimal convergence with identical model parameters

and identical shared model parameters [31].

Pseudo-code shown in algorithm 1 is a modified version of the P2P-BN method and

details the global agent behavior:

• Initialization: all agents initialize their models with identical model parameters,

which implies that the weights of the encoder layer would be identical across agents,

regardless of the task

• Train agent: at each iteration, one of the agents that received at least one update

from the last active state is locally trained

• Local training: the chosen agent performs the training step and unfreezes the en-
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coder layer (if previously frozen). The agent then sends the model parameters to its

peers. If any of the peers have a different task Ti ̸= Tj, the peer freezes the encoder

layer after aggregating the received update

Algorithm 1 Agents training simulation pseudo-code

1: function Train(A,W,E)
2: A: agents
3: W: communication matrix
4: E: number of epochs to perform locally
5: Initialize(A) ▷ Initialize all agents models and encoder layers to identical

model parameters
6: repeat
7: ai = RandomActiveAgent(A) ▷ Random agent which received at least

one update from last active state
8: LocalTrain(ai, E)
9: if IsEncoderFrozen(ai) then

10: UnfreezeEncoderLayer(ai)

11: for aj in Neighbors(W,ai) do
12: if Tj ̸= Ti then
13: encoder(aj) = AverageEncoder(aj, ai)
14: FreezeEncoder(aj)
15: else
16: Model(aj) = AverageModel(aj, ai)

17: until Maximum iteration reached

5. Evaluation

This section evaluates the proposed contributions through several experiments com-

paring multi-task learning to the baseline single-task learning in different directed sparse

topologies. The methodology and metrics employed in the experiments are first described,

followed by a comprehensive analysis and discussion of the results obtained.
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5.1. Methodology

Model and datasets. For the MTP task, Reddit [8] and StackOverflow [29] datasets are

used. Both datasets are comprised of unique internet users and their comments. CoNLL-

2003 [35] and Few-NERD [10] datasets are used for the NER task. The CoNLL-2003

dataset contains four different entities: person, location, organization, and miscellaneous,

while the Few-NERD dataset consists of eight main types of entities: art, building, event,

location, organization, person, product, and miscellaneous. In the following experiments,

an agent has either received comments from a unique user for the MTP task or a uniform

sample of data for the NER task.

The approach taken in the initial BERT study is followed, and the WordPiece embed-

dings [38] with a 30,000 token vocabulary are used for both tasks. For the MTP task,

a [MASK ] token is used as a placeholder for the word being predicted. Encoder layer

outputs related to the [MASK ] token are then forwarded to the output layer. The MTP

task is formed as a next-word prediction (NWP) [26, 30] task. Consequently, the [MASK ]

token consistently appears at the end of the token sequence. Solely predicting the final

word of the sentence diminishes a crucial advantage of the BERT-based model, namely its

capacity to incorporate pertinent contextual information for computing word probability

distribution. However, this characteristic can be perceived as an additional task hetero-

geneity, introducing complexity in establishing parallels between the two tasks. For the

NER task, all encoder layer outputs are forwarded to the output layer as a prediction is

needed for each input word besides the padding tokens. For both MTP and NER, the

first token of the sequence is always [CLS ] and the last [SEP ]. Sentences are broken down

into sequences of 128 words, and padding is added to the end of sentences shorter than

128 words. For the NWP task, most studies chose a sequence length of ten to twenty

words. However, our preliminary experiments showed that one task using a substantially

smaller sequence length could cause accuracy degradation for the other task. Figures 3

and 4 showcase an example of an MTP and NER sequence, respectively.

The encoder architecture utilized in the experiments is derived from the BERT-Tiny

architecture comprised of two attention heads, two transformer blocks in the hidden lay-

ers, and a hidden size of 128 units. The resulting architecture consists of eight million
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Figure 3: MTP sequence formed from the sentence ”He is walking down the street”.
Token [MASK ] is a placeholder for the predicting word. Only ”down” is correct, even
though multiple words could be considered correct in this context.

Figure 4: NER sequence formed from the sentence ”Foreign Ministry spokesman Shen
Guofang told Reuters”. Specific words must be classified as one of the possible entities.
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parameters. The selection of the smallest variant stems from several justifications. No-

tably, the choice is informed by the constrained resources of agents, such as mobile or IoT

devices, which are limited in memory and computing capacities. Furthermore, relaying

larger models over the network entails additional communication costs, and the limited

data accessible to agents alleviates the need for larger models. However, the main focus of

this study is to enable multi-task learning among diverse tasks in decentralized networks

rather than aiming for state-of-the-art accuracy on any particular NLP task.

Metrics. All metrics are measured at the agent level using the agent’s local data. Average

User model Accuracy (UA) [23] metric is used to measure the performance of the overall

learning process. UA metric is calculated as the average accuracy across all agents and

can be expressed as:

UA =
1

n

n∑
i=1

acci (2)

where acci is the accuracy of metric acc on model i using local test dataset i. MTP task

can be considered as a classification task, and the prediction accuracy is calculated as the

fraction of correct predictions (TP and TN) over total predictions (TP, TN, FP, and FN):

accuracyi =
TPi + TNi

TPi + TNi + FPi + FNi

. (3)

The F1 score metric measures the model’s accuracy for the NER task and is defined

as the unweighted average (macro f1-score) of precision and recall, given as follows:

precisioni =
TPi

TPi + FPi

, (4)

recalli =
TPi

TPi + FNi

, (5)

F1-scorei =
2× recalli × precisioni

recalli + precisioni

. (6)
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5.2. Experiments

Several experiments are performed and analyzed to evaluate and compare our approach

to individual clustered task-specific (CTS) learning, where agent groups are trained sep-

arately for each task and dataset. Experiments are carried out with and without encoder

layer freezing, termed asMT-EF andMT, respectively. The first experiment demonstrates

a naive approach of randomly creating peer connections (regardless of the task) in both

MT-EF and MT. The second experiment demonstrates clear benefits in both MT-EF and

MT when limiting the number of non-task-specific peers. The third experiment presents

MT-EF benefits when collaboratively learning four different tasks simultaneously.

For all experiments, the batch size is set to 50, and all agents use the Adam [14]

optimizer with the learning rate set to 5 × 10−4. When training BERT transformers, it

is common to have a warmup period with a high learning rate for a certain number of

training iterations [9]. The learning rate is then gradually decreased using a linear decay.

In these experiments, the learning rate is permanently fixed to 5 × 10−4 to reduce the

learning rate’s impact on the overall learning process. Data is processed in sequences

of 128 tokens for both MTP and NER tasks, and the learning process is stopped once

the agents, on average, perform 300 epochs over the local dataset. A directed sparse

topology is used in experiments, with each agent having three in-neighbors and three

out-neighbors. The experiments in [32] showed that compared to undirected, directed

sparse communication produced better results, which we confirmed with our preliminary

evaluations. The term random sparse topology is used when connections between agents

are formed randomly, regardless of the task. The parameter PT is set to 0.33 in the

experiments with limited non-task-specific peer connections, which we termed as clustered

sparse topology. As a result, in clustered sparse topology, each agent established two peer

connections with agents within the same task and one with an agent from a different task.

In the conducted experiments, the topology is predefined and established at the onset of

the training process based on the specific learning task assigned to the agents. An example

of task-specific clusters, random sparse, and clustered sparse topology is shown in Figure

5. A group of twenty agents is trained for each task (dataset) for all experiments. As

the Reddit and StackOverflow datasets are partitioned at the user level, data regarding
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(a) Task specific clusters (b) Random sparse (c) Clustered sparse

Figure 5: An example of task-specific clusters (a), random sparse (b), and clustered sparse
(c) topology. Agent color represents the learning task.

one user is assigned to one agent. For the NER datasets, data is partitioned uniformly to

twenty agents. Since the Few-NERD dataset is substantially larger than the CoNLL-2003

dataset, only 20% of the Few-NERD dataset is used in the experiments. In summary, on

average, an agent has around a thousand training examples, regardless of the dataset or

task. For each experiment, three runs are conducted, each time with a different set of

users for the MTP task and different data distributions for the NER task. The Student

t-test evaluates the statistical difference between CTS baseline and multi-task results.

Since the word vocabulary is identical for both MTP datasets, the results of training the

MTP problem as a mono task are also given in the experiment results.

Multi-task in random sparse topology. The first experiment demonstrates the multi-

task characteristics in a random sparse network topology. Evaluations are performed for

all two-task combinations for MT-EF and MT. Figure 6 shows that both MTP tasks con-

verge faster and achieve higher top accuracy when trained individually compared to both

types of multi-task learning. Similarly, CTS learning of the NER task produces better

results than any multi-task combination. The only exception is the NER task using the

CoNNL-2003 dataset, which achieved higher accuracy for all MT combinations. Agents

learning the NER task using the CoNNL-2003 dataset achieve higher accuracy in MT set-

ting while simultaneously degrading the accuracy of the MTP and the Few-NERD agents,

suggesting that, in random sparse topology, multi-task optimization is not beneficial for

all agents. Table 1 summarizes the top UA accuracies and the relative increase/decrease

in accuracy compared to the baseline CTS results. Additionally, the MTP mono task

displayed some interesting results. Even though StackOverflow is generally focused on

programming questions and answers and Reddit is not on any specific topic, both tasks
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achieve higher top accuracy with faster convergence when trained as a mono task. This

result questions previous findings that dividing agents into separated multi-task problems

benefits all agents, at least in the case of MTP tasks.

0 50 100 150 200 250 300
Epoch

a)

4

5

6

7

8

9

10

Te
st

 U
A 

(%
)

Reddit (MTP)

Reddit
Reddit+StackOverflow
Reddit+CoNNL
Reddit+Few-NERD

0 50 100 150 200 250 300
Epoch

b)

4

5

6

7

8

9

10

Te
st

 U
A 

(%
)

StackOverflow (MTP)

Stackoverflow
StackOverflow+Reddit
StackOverflow+CoNNL
StackOverflow+Few-NERD

0 50 100 150 200 250 300
Epoch

c)

40

42

44

46

48

50

52

54

56

Te
st

 U
A 

(%
)

CoNNL (NER)

CoNLL
CoNNL+Reddit
CoNNL+StackOverflow
CoNNL+Few-NERD

0 50 100 150 200 250 300
Epoch

d)

20

22

24

26

28

30

32

Te
st

 U
A 

(%
)

Few-NERD (NER)

Few-NERD
Few-NERD+Reddit
Few-NERD+StackOverflow
Few-NERD+CoNNL

0 50 100 150 200 250 300
Epoch

e)

4

5

6

7

8

9

10

Te
st

 U
A 

(%
)

Reddit (MTP) 

Reddit
Reddit+StackOverflow
Reddit+CoNNL
Reddit+Few-NERD

0 50 100 150 200 250 300
Epoch

f)

4

5

6

7

8

9

10

Te
st

 U
A 

(%
)

StackOverflow (MTP) 

Stackoverflow
StackOverflow+Reddit
StackOverflow+CoNNL
StackOverflow+Few-NERD

0 50 100 150 200 250 300
Epoch

g)

40

42

44

46

48

50

52

54

56

Te
st

 U
A 

(%
)

CoNNL (NER) 

CoNLL
CoNNL+Reddit
CoNNL+StackOverflow
CoNNL+Few-NERD

0 50 100 150 200 250 300
Epoch

h)

20

22

24

26

28

30

32

Te
st

 U
A 

(%
)

Few-NERD (NER) 

Few-NERD
Few-NERD+Reddit
Few-NERD+StackOverflow
Few-NERD+CoNNL

                                                                                                      MT                                                                                                      

                                                                                                    MT-EF                                                                                                    

Figure 6: Test UA in a sparse topology. The plus sign (+) denotes multi-task collabora-
tion between the two tasks, while only the dataset name (color red) represents the CTS
baseline. Results are shown for both MT and MT-EF.

Table 1: Top Test UA in a sparse topology. Column values summarize the results of
each dataset task for each of the multi-task combinations. Statistically significant results
(p < 5× 10−3) are marked with **.

Collaboration Dataset (Task) Reddit StackOverflow CoNLL Few-NERD
CTS baseline 9.10% 9.02% 53.13% 31.69%
Mono 9.56% (+5.05%) ** 10.39% (+15.19%) ** - -
MT

Reddit - 8.85% (-1.88%) ** 53.63% (+0.94%) ** 31.14% (-1.74%)
StackOverflow 8.43% (-7.36%) ** - 53.03% (-0.19%) ** 30.51% (-3.72%) **
CoNLL 8.43% (-7.36%) ** 8.35% (-7.43%) ** - 31.58% (-0.35%) **
Few-NERD 8.68% (-4.62%) ** 8.81% (-2.33%) ** 56.17% (+5.72%) ** -

MT-EF
Reddit - 9.53% (+5.65%) ** 49.71% (-6.44%) ** 28.30% (-10.70%) **
StackOverflow 9.25% (+1.65%) ** - 49.68% (-6.49%) ** 28.45% (-10.22%) **
CoNLL 8.57% (-5.82%) ** 8.22% (-8.87%) ** - 28.44% (-10.26%) **
Few-NERD 8.72% (-4.18%) ** 8.74% (-3.10%) ** 52.36% (-1.45%) ** -

Multi-task clustered sparse topology. In clustered sparse topology, an agent commu-

nicates with two peers that share the same task and one peer from another task. Clustered

sparse topology can be considered a mixture between task-specific clusters and a random

sparse topology. Since each agent communicates with three peers, the following results

are achieved using an equal number of exchanged messages (models). Figure 7 shows the
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results obtained for MT and MT-EF. While the MT setting obtained slightly higher ac-

curacies for MTP and NER tasks using the CoNLL-2003 dataset, the Few-NERD agents

achieved lower accuracy for all multi-task combinations. In contrast, in the MT-EF set-

ting, all tasks obtained a substantially higher top accuracy in any multi-task combination.

Table 2 summarizes the obtained top UA accuracies and the relative increase/decrease

in accuracy compared to baseline CTS results. Training the MTP datasets as a mono

task in clustered sparse topology achieved slightly higher test UA than in random sparse

topology, suggesting that connection manipulation may improve accuracy even in mono

tasks.
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Figure 7: Test UA in a clustered sparse topology. The plus sign (+) denotes multi-task
collaboration between the two tasks, while only the dataset name (color red) represents
the CTS baseline. Results are shown for both MT and MT-EF.

Table 2: Top Test UA in a clustered sparse topology. Column values summarize the results
of each dataset task for each of the multi-task combinations. Statistically significant
results (p < 5× 10−3) are marked with **.

Collaboration Dataset (Task) Reddit StackOverflow CoNLL Few-NERD
CTS baseline 9.10% 9.02% 53.13% 31.69%
Mono 9.71% (+6.70%) ** 10.41% (+15.41%) ** - -
MT

Reddit - 9.90% (+9.76%) ** 53.40% (+0.51%) 30.24% (-4.58%) **
StackOverflow 9.46% (+3.96%) ** - 53.43% (+0.56%) 30.98% (-2.24%) **
CoNLL 8.86% (-2.64%) ** 9.10% (+0.89%) ** - 31.61% (-0.25%) **
Few-NERD 9.20% (+1.10%) ** 9.22% (+2.22%) ** 56.54% (+6.42%) ** -

MT-EF
Reddit - 11.10% (+23.06%) ** 54.20% (+2.01%) ** 32.23% (+1.70%) **
StackOverflow 10.73% (+17.91%) ** - 53.89% (+1.43%) ** 32.92% (+3.88%) **
CoNLL 10.35% (+13.74%) ** 10.43% (+15.63%) ** - 32.19% (+1.58%)
Few-NERD 10.35% (+13.74%) ** 10.60% (+17.52%) ** 56.22% (+5.82%) ** -
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Four task MT-EF in clustered sparse topology. Previous experiments demon-

strated that the MT-EF collaboration between two different tasks benefits both clusters

of agents. This experiment evaluates the collaboration of training all four tasks in a clus-

tered sparse topology using the MT-EF approach. Based on the parameter PT (set to

0.33), each agent only forms one peer connection with another agent with a different task.

Once all connections are formed, all clusters are connected through at least one agent;

however, not all agents communicate with agents from all tasks (see Figure 8 as an ex-

ample). As Figure 9 shows, all four different groups of agents were able to achieve higher

top accuracies when trained in a multi-task setting, suggesting that limited collaboration

between different tasks of agents is always beneficial for all agents. Table 3 summarizes

the achieved top UA accuracies with the average results from prior experiments included

for reference (2 tasks (avg)). All agents achieved a higher top accuracy when learning all

four tasks simultaneously compared to the average top accuracy achieved in prior exper-

iments involving two-task combinations, except for the Few-NERD agents, whose results

were lower but comparable.

Figure 8: An example of four different agent clusters with two task-specific and one non-
task-specific connection randomly formed with another cluster of agents, regardless of the
task.
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Figure 9: Test UA for MT-EF in a clustered sparse topology. The plus sign (+) denotes
multi-task collaboration between the (four) tasks, while only the dataset name (color red)
represents the CTS baseline.

Table 3: Test UA for MT-EF in a clustered sparse topology. Column values summarize
the average results from the previous experiment using the MT-EF (2 tasks) and results
of four way MT-EF collaboration between all four tasks (4 tasks). Statistically significant
results (p < 5× 10−3) are marked with **.

Collaboration Dataset (Task) Reddit StackOverflow CoNLL Few-NERD
CTS baseline 9.10% 9.02% 53.13% 31.69%
MT-EF 2 tasks (avg) 10.48% (+15.16%) 10.71% (+18.74%) 54.77% (+3.09%) 32.45% (+2.40%)
MT-EF 4 tasks 10.55% (+15.93%) ** 10.88% (+20.62%) ** 57.32% (+7.89%) ** 32.33% (+2.02%)
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6. Limitations

Sequence length. One of the limitations of the proposed approach is that all tasks

must use identical sequence lengths when training collaboratively. In the domain of

causal language modeling, the next-word prediction (NWP) task often employs a 20-

word sequence as model input [26, 30]. However, it is worth noting that this particular

approach was not adhered to in the context of the MTP task. We observed that using

different sequence lengths only benefits the task with the shorter sequence length while

greatly disadvantaging the task with a longer sequence length.

Natural language processing. Our approach is currently limited to NLP tasks.

While alternative versions of transformer models are also used in other domains, such as

vision processing, it needs to be determined to which degree there is an overlap with the

NLP models and study if any collaboration between tasks may be established.

This study aimed to demonstrate beneficial cooperation among clusters of agents as-

signed with distinct tasks. However, to attain results comparable to state-of-the-art re-

search, pre-trained encoder-only transformer weights may be used as the agent’s initial

model weights, which would greatly improve the results given the limited amount of data

accessible to the agents.

Shared tokenizer. It is common in the literature to assume a globally shared tok-

enizer. However, we identify this as a limitation and an opportunity for future research.

Specifically, this could include research on reaching a consensus on the tokenizer to be

used in the training process among different agents in the network.

Scaling. Performed experiments were limited to two distinct NLP problems, using

four different datasets with a set of twenty agents from each dataset. To further un-

derstand the presented approach, future research should focus on scaling by increasing

the number of agents and tasks. Additionally, the impact of the parameter PT on the

multi-task learning process should be investigated through additional experiments.
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7. Conclusion

The main contribution of this research is a technique that utilizes multi-task learning

in a peer-to-peer architecture to improve the accuracy of deep neural networks trained

on heterogeneous data and distinctly different tasks. The approach presented utilized the

encoder-only transformer model in a multi-task peer-to-peer network for the masked-token

prediction (MTP) and named-entity prediction (NER) tasks, successfully demonstrating

the benefits of a careful collaboration between the agents with distinct tasks. Our ex-

periments demonstrated the negative impact of randomly connecting agents in a sparse

topology. Random peer connections left some agents with no task-specific neighbors,

which resulted in lower accuracy. Limiting the connections between agents with differ-

ent tasks improved the inner task-specific collaboration while retaining non-task-specific

collaboration. Furthermore, agents reached consensus faster by strategically freezing the

shared part of the model, resulting in improved accuracy results. The MT-EF collab-

oration led to a statistically significant increase of 11.6% in the mean relative accuracy

compared to the baseline results for individual tasks. Future research should explore

the generalization of these findings to other types of tasks and model architectures, as

well as the scalability of this approach to larger networks with more agents and different

tasks. Additionally, as mentioned in the limitations, pre-trained encoder-only transformer

weights (such as BERT weights) may be utilized as local model’s initial weights which

would further improve the learning outcomes.
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[4] Aurélien Bellet et al. “Personalized and Private Peer-to-Peer Machine Learning”. In:

Proceedings of the Twenty-First International Conference on Artificial Intelligence

and Statistics. Ed. by Amos Storkey and Fernando Perez-Cruz. Vol. 84. Proceedings

of Machine Learning Research. PMLR, Apr. 2018, pp. 473–481. url: https://

proceedings.mlr.press/v84/bellet18a.html.

[5] Michael Blot et al. “Distributed optimization for deep learning with gossip ex-

change”. In: Neurocomputing 330 (2019), pp. 287–296. issn: 0925-2312. doi: https:

//doi.org/10.1016/j.neucom.2018.11.002. url: https://www.sciencedirect.

com/science/article/pii/S0925231218313195.

[6] Michael Blot et al. “Gossip training for deep learning”. In: (Nov. 2016).

[7] Amaury Bouchra Pilet, Davide Frey, and François Täıani. “Simple, Efficient and
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1. Introduction

Decentralized learning has emerged as a promising paradigm in machine learning, par-

ticularly in scenarios where data is distributed among numerous agents in a peer-to-peer

network. However, real-world data often has non-identical and non-independent (non-IID)

distributions across these agents, which makes collaborative learning challenging [58, 33].

The opposite of a non-IID scenario is an IID scenario, wherein the data distribution among

agents is identical and independent. In such cases, agents share similar distributions of

local data samples. The IID scenario is favorable as it facilitates convergence towards a

similar solution for all models, thereby enabling faster convergence and enhanced model

performance. Conversely, learning in non-IID data environments impedes the learning

processes between agents, resulting in reduced performance of machine learning models

[48, 51].

Clusters of agents frequently display comparable non-IID attributes, which promote

similarities within each cluster while simultaneously revealing significant disparities across

different groups or individual agents. This similarity is also seen in parameter-server

Federated Learning methods, where clients are put into coherent groups using cluster-

ing techniques to improve personalization [15, 32, 43, 12, 44]. Notably, in Federated

Learning, characterized by a centralized server orchestrating the learning procedure, the

identification and estimation of agent clusters are more feasible, as emphasized in the

aforementioned studies. In decentralized peer-to-peer systems, on the other hand, there

is not a single entity driving the whole process, so each agent is responsible for its own

learning path. This makes it more difficult to elicit and manage agent clusters during the

learning process.

To mitigate the challenge of identifying similar agent clusters, recent research studies

have proposed methodologies enabling agents to autonomously ascertain their potential

neighboring peers, thereby departing from random assignment strategies. The studies’

empirical investigations, which focused on synthetic non-IID environments, show that

these methods can be used with a variety of non-IID properties. Notably, these methods

exhibit superior performance compared to a baseline approach that represents random

organization of connections among agents.
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This research evaluates established methodologies for the adaptive establishment of

peer connections in two distinct learning tasks. The first task involves image classification

within a synthetically generated environment, while the subsequent task addresses next-

word prediction using a dataset gathered at the user level, which represents a realistic

non-IID environment.

The objective of this study is to evaluate the efficacy of adaptive peer connection

establishment in various synthetic and realistic non-IID peer-to-peer environments. This

evaluation is compared against the performance of randomly assigned peer connections

between agents, with the aim of identifying the optimal method for autonomous peer

connection establishment across all non-IID scenarios.

The primary research questions guiding this study are as follows:

RQ1 How can autonomous personalized peer connections be created to optimize learning

outcomes in peer-to-peer learning environments with non-IID data distributions?

RQ2 What are the impacts of different peer connection methodologies on the efficiency

of communication within the network?

RQ3 What are the impacts of different peer connection methodologies on the centraliza-

tion tendencies within the network?

RQ4 Which methods demonstrate the best balance between communication efficiency,

and overall improved learning outcomes for agents?

By answering these research question, our contributions are as follows:

• overview of the methods and algorithms used for adaptive and personalized estab-

lishment of peer connections in decentralized deep learning,

• evaluation and comparison of studied methods in synthetic and realistic non-IID

environments,

• pareto analysis of the best methods based on the achieved accuracy and the number

of messages exchanged per agent.

Access to the code implementation and detailed results of the conducted experiments are

available at the publicly accessible repository located at https://github.com/fipu-lab/

p2p_bn.
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The rest of this paper is organized as follows: Section 2 provides more details on

non-IID data, decentralized learning and network topologies used in decentralized learn-

ing. Section 3 presents related studies, while Section 4 describes methods that enable

autonomous agent peer connection creation. Section 5 outlines the selection criteria for

including relevant autonomous adaptive peer connection creation methods in this study

and details the methodology used to evaluate and compare the studied methods. The

results are presented and analyzed in Section 6. Section 7 concludes the study and offers

suggestions for future research directions.

2. Background

As previously stated, non-IID data setting is a key differentiator for peer-to-peer deep

learning, so this section will briefly describe the key characteristics of non-IID data. It

will also describe the key difference between decentralized and federated learning and lay

the basics for an adaptive and personalized peer selection process.

2.1. Non-IID data

The agent’s local data encompasses all data gathered by the agent. This data encom-

passes various types of information: images, texts, sensor values, location data, etc. Since

agents are all individual devices in different contexts, they generate and own different data

[29], which happens to be non-independently and non-identically distributed (non-IID).

On the other hand, having IID data at the agent level means that each batch of data used

for an agent’s local model update is statistically identical between agents, as if it were

uniformly drawn from the entire training dataset, which is a union of all agents’ local

datasets.

Consider a dataset of numeric values. A sample of size n consists of n random values:

{X1, X2, ..., Xn}. This sample is IID if the random values have the following properties:

Independent: The random values X1, X2, ..., Xn are independent, meaning that the
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occurrence of any Xi does not depend on any other Xj.

Identically Distributed: The random values X1, X2, ..., Xn are from the same popu-

lation and thus have the same distribution or cumulative distribution function (CDF)

F :

Fx1 = Fx2 = ... = Fxn = Fx. (1)

Training on IID data is easier and faster because all model updates converge toward

one global solution. Conversely, when agents have non-IID data, one global model solution

is not optimal for all agents, making this case a challenging learning problem. Unfortu-

nately, non-IID data is common occurrence in decentralized environments [20, 58]. The

data between different agents may vary in size, label mapping, features, and other data

properties, which makes it difficult for multiple agents to work together to train neural

network (NN) models. Where possible, a generative adversarial network (GAN) may be

employed to counterfeit data directly on agents, thereby enriching their local dataset both

in size and data diversity [57].

2.2. Decentralized learning

In a decentralized network, agents communicate only with their neighbors or peers,

adhering to a network topology such as ring, sparse, or fully connected topology (see

Figure 1). The number of the agent’s peers is predetermined in ring and fully connected

topologies. The least restrictive topology is one with sparse connections, where agents

can have as many peers as they like. Communication in network topology can be directed

(asymmetric), where an agent receives messages from one set of peers and sends messages

to another set [4, 51], or undirected (symmetric), where agents send and receive messages

from the same set of peers [31, 52]. A notable exception are gossip methods [5, 37],

where an agent sends its messages to a random peer in the network, disregarding a spe-

cific network topology. The information exchanged between agents generally comprises

the agent’s model parameters, which are often aggregated by immediately averaging each

received model with the local model parameters or by aggregating all models once they
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Figure 1: Examples of network typologies in undirected and directed communication.

have been received. When combining received model parameters, different aggregation

strategies can be used, such as those based on trust [18], model accuracy [50, 6], or other

variables. However, this study focuses on assessing the advantages of peer connection de-

sign; thus, a simple averaging method is employed for aggregating the model parameters.

An abstract decentralized learning process is outlined in Algorithm 1.

Consider the example of learning a next-word prediction (NWP) task in a decentral-

ized peer-to-peer environment. The objective of NWP task is to predict the next word

given a sequence of previous words, necessitating a dataset of sentences or paragraphs be-

fore model training begins. Devices such as smartphones and laptops, serving as agents,

possess user-typed text that can be collected for local model training. Each agent main-

Algorithm 1 Agents abstract training process

Require:
Initialize η > 0, agents A, communication matrix W , number of local batch iterations
E
xi = 0 for all agents i ∈ A ▷ Initialize all agents models to identical value

1: repeat for agent i ∈ A ▷ In parallel
2: for e = 0, 1, 2, ..., E, at agent, i do
3: ξi ∼ Di ▷ Sample new mini-batch from local distribution
4: xi = xi − ηFi(xi; ξi) ▷ Train model on batch

5: Send(xiWji) ▷ Send model to peers
6: Receive(xjWij) ▷ Receive model from peers
7: xi = Aggregate(xjWij)
8: until Maximum iteration reached

Output: 1
N

∑N
i=1 xi, N = |A| or xi∀i ∈ A ▷ Output is either one global model produced

by averaging all models or personal model for each agent
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tains its own distinct dataset and model instance. Once these prerequisites are met, the

agent can participate in the peer-to-peer learning process. As outlined in Algorithm 1,

the initial step at the agent level involves local training of the model on the agent’s own

text data. This training imparts some knowledge to the model, though its performance

may remain suboptimal due to the limited amount of locally available training data [51].

To enhance model performance, the agent communicates with other agents engaged in

the same task, exchanging only the model parameters in a peer-to-peer manner, often

following a predetermined network topology. Peer-to-peer information exchange between

agents is extensively utilized in blockchain applications [14, 55, 19]. After receiving up-

dates from peers, each agent integrates these updates into its local model, benefiting from

the collective knowledge within the network. This collaborative aggregation improves the

model’s ability to predict the next word across diverse contexts. As each agent’s model

becomes more informed through peer interactions, the accuracy of local model’s next-word

predictions improves. Once the model converges, it may be used by the agent’s owner,

such as person owning a smartphone or a laptop.

2.3. Network topology

The connection between agents is captured through a communication graph G =

(JNK, E,W ) where JNK = {1, ..., N} is a set of all nodes in the network, E ∈ JNK × JNK

is the set of edges, and W ∈ RN×N is a nonnegative weighted matrix. The weight of edge

(i, j) ∈ E is given by Wij with the convention Wij = 0 if (i, j) /∈ E or i = j. An agent

i only sends messages to agent j if Wij > 0, which means that agent i communicates

with peers Ni = {j : Wij > 0} without knowledge of other peers in the network and

operates without synchronization with non-connected peers (Wij = 0). Commonly, the

communication matrix is comprised of fractions rather than integers. These fractions

may signal trust between agents or are simply a decentralized method to control each

agent’s contributions. In the majority of cases, the parameter W falls within the range of

Wij ∈ [0, 1]. The resulting communication matrix shows the connection between agents.

Consider the next communication matrix, W ∈ R4×4:
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W =


0 1/2 0 1/2

1/2 0 1/2 0

0 1/2 0 1/2

1/2 0 1/2 0

 (2)

Column indices of matrixW correspond to sending nodes, while row indices correspond

to receiving nodes. For the node with index 0, Node0, sending indices (column) are

{0, 1/2, 0, 1/2}, meaning that Node0 sends its message to nodes Node1 and Node3. Row

at index 0 shows that Node0 receives messages from both Node1 and Node3. This matrix

example demonstrates an undirected/symmetric communication graph (see figure 2). The

opposite is directed/asymmetric communication, in which an agent can send messages to

a set of peers but receive messages from a completely different set of peers. In a directed

graph, an agent has in-peer if (i, j) ∈ E and out-peer if (j, i) ∈ E. The out-peer set denotes

the peers to whom the agent transmits messages, whereas the in-peer set comprises the

peers from whom messages are received. Typically, the number of in and out peers is

equivalent, which is commonly referred to as the node’s in-degree and out-degree.

Figure 2: Symmetric/undirected communication graph with four nodes.

2.4. Adaptive and personalized autonomous peer connection es-

tablishment

Instead of having a fixed and pre-specified topology, connections between agents can

be dynamically established during the learning process to identify the most similar peers,

thereby enhancing learning outcomes such as faster model convergence and higher local
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model accuracy [59]. In this scenario, each agent typically retrieves models from more

peers than it would in a fixed topology, but only aggregates models from the top N most

similar peers. The pull-gossip method [22] is generally employed to request models from

peers. Peers with the most similar properties, such as the most similar model parameters,

are marked as the most similar and used for subsequent communication rounds, along with

newly sampled peers. This approach, although potentially increasing the communication

load and complexity compared to fixed topology communication, offers the advantage of

identifying similar peers, thereby potentially enhancing learning outcomes. Additionally,

as methods generally utilize the pull-gossip method, there can be cases where a large

number of agents pull the model from the same peer or a small subset of peers, resulting

in a highly imbalanced communication load at the agent level and high centralization

properties of the network.

Consider a network of six agents as depicted in Figure 3, where the colors represent

agent similarity. For simplicity, we focus on the behavior of agent 0, recognizing that

all agents in the network follow similar steps. In this scenario, the agent aggregates

updates from only one peer. In a fixed topology, agent 0 would consistently receive model

updates from a single predetermined peer, which are then aggregated with its local model.

However, in an autonomous peer selection scenario, agent 0 must communicate with

multiple peers to determine the most suitable ones for aggregation, ultimately selecting

the top N similar peers, in this case, the top one. During the first communication round,

agent 0 randomly selects two peers (peers 3 and 4) and retrieves their models. Although

peer 3 has a low similarity, it is higher than that of peer 4, so agent 0 aggregates the

model from peer 3 with its local model. In the second round, agent 0 communicates with

peer 3 again and adds a new random peer, peer 2. Since peer 2 has a lower similarity

than peer 3, the model from peer 3 is aggregated once more. In the third round, agent

0 selects a new random peer, peer 5, in addition to the most similar known peer, peer

3. Peer 5 exhibits very high similarity, surpassing peer 3, thus the model from peer 5 is

aggregated. In the fourth round, agent 0 continues with peer 5 and adds another random

peer, peer 1, who has a lower similarity than peer 5. Consequently, agent 0 will continue to

communicate with peer 5 until new agents enter the network. This example illustrates the

general approach and methodology for autonomously selecting the most similar peers. The

number of models an agent aggregates is a tunable parameter that can be adjusted, as well
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Figure 3: Example of adaptive peer selection in a network of six agents. The color of each
agent indicates its similarity. Only behaviour of agent 0 is demonstrated, recognizing that
all agents in the network follow similar steps. Agent 0, in each communication round,
randomly selects peers and aggregates the model updates from the peer with the highest
similarity. In each subsequent round, the agent receives models from a peer with highest
known similarity and one additional unknown random peer. This process illustrates how
an agent autonomously discovers and maintains communication with the most similar
peers, enhancing learning outcomes.

as the number of new random peers sampled in each round. Additionally, there may be

constraints on the duration of this discovery process, after which the agent communicates

only with the most similar peers. It is important to note that the similarity between an

agent and its peers can be calculated using various methods, as described in Section 4.
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3. Related work

Several recent studies have highlighted significant advancements and challenges in the

exploration of decentralized peer-to-peer learning and Federated Learning (FL).

A comprehensive overview of the recent developments in Federated Learning and de-

centralized peer-to-peer methods is provided by Kairouz et al. [23]. Their work outlines

an extensive collection of open problems and challenges, shedding light on the future di-

rections and hurdles that need to be addressed to advance these fields. One of the major

challenges is non-IID environments.

Aledhari et al. [1] offers a detailed examination of Federated Learning, focusing on

enabling software and hardware platforms, protocols, and practical applications. Their

study covers real-life use cases, demonstrating FL’s practical implementation and potential

benefits in various domains.

The unique challenges of running machine learning and deep learning models on edge

devices in a distributed manner have been investigated by Filho et al. [13]. This study

highlights how various techniques are adapted or specifically designed to function on these

resource-constrained devices. Fundamental processes such as caching, training, inference,

and offloading on edge devices are thoroughly analyzed, providing insights into the benefits

and drawbacks of these strategies.

Witt et al. [56] conducted a systematic literature review to evaluate FL frameworks

that integrate blockchain technology to decentralize the learning process while employing

reward mechanisms to incentivize participation. Their analysis reveals the potential of

combining these technologies to enhance the robustness and security of FL systems.

The challenges of resource sharing in unstructured peer-to-peer networks, which pose

unique difficulties in resource location due to their decentralized nature, have been ad-

dressed by Shoab et al. [45]. They propose an intelligent neighbor selection (INS) algo-

rithm using Q-learning, which enhances retrieval effectiveness and reduces search costs by

making informed decisions on neighbor selection. Their results show significant improve-

ments over traditional methods, demonstrating the effectiveness of the INS algorithm in

optimizing resource sharing in decentralized networks. This study is closely related to ours

as it focuses on peer selection optimization to enhance retrieval effectiveness, while our
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study focuses on selecting optimal peers to optimize the training of deep neural networks

in non-IID scenarios.

Our research diverges from existing studies by focusing specifically on the autonomous

personalized creation of peer connections in peer-to-peer learning within non-IID environ-

ments, an area not thoroughly explored in previous works.

4. Establishing personalized connections in peer-to-

peer networks with non-IID data

To answer RQ1, we analyzed existing methods for autonomous and personalized peer

connection creation. The methods were selected according to the criteria provided in

Section 5.1.

One approach to mitigating the effects of non-IID data involves assuming the existence

of groups of agents with similar data distribution properties and organizing the learning

process as a multi-task learning objective. Multiple agent groups learn different tasks in

multi-task learning towards an identical objective. Due to data heterogeneity, it has been

demonstrated that separating agents into clusters can yield favorable learning outcomes

[53, 21]. In this scenario, all agent clusters learn the same problem but communicate

only with similar peers, thereby reducing the negative impact of heterogeneous data.

A similarity metric is employed to group peers together. This metric can be based on

metadata [53], gradients [11, 43, 12], model weights [43, 36, 7, 32], or local data model

loss [6, 38, 60, 30, 47]. Metadata may include information such as the geolocation or

language of an agent or information from the training data, such as the personality and

gender of the user [53]. Additionally, data distribution can serve as metadata when

designing topologies with a data distribution skew [3]. Similarity between two gradients

or model weights can be calculated using a distance metric, such as cosine or Euclidean

distance. It has been shown that agents with similar data distributions exhibit a small

Euclidean distance and a considerable cosine similarity in their gradients or model weights

[30]. Finally, model similarity can be assessed using the loss value obtained from the loss
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function on local data, where a model with a lower loss value is considered to exhibit a

higher degree of similarity. Personalized peer connections between agents have already

been considered in the context of multi-task learning [42, 59, 53]. This approach ensures

that agents with similar learning tasks and data distributions are more effectively grouped,

enhancing overall learning outcomes.

Building on the conclusions drawn from multi-task learning in non-IID scenarios, where

learning outcomes are enhanced by grouping agents into clusters that collaborate exclu-

sively within the cluster, a new research direction has emerged. This direction involves

enabling agents to collaborate with peers who share similar properties in an autonomous

and personalized manner. Learning outcomes are expected to improve by collaborating

with peers who have similar interests and data distributions, as evidenced by the success

of multi-task learning and preliminary results from research studies addressing this sce-

nario (presented below). The following subsections analyze personalized and autonomous

peer creation methods, categorized by model-based and data-based similarity approaches.

4.1. Model similarity

Similarity based on empirical model loss. In peer-to-peer deep learning, empiri-

cal model loss on local data has been used most often to measure how similar models are

to each other. Within this context, several notable approaches, namely DAC [60], DiPLe

[61], L2C [28], PANM [30], and PENS [38] have effectively employed empirical model loss

as the fundamental metric for quantifying model similarity. Each of the aforementioned

approaches exhibits distinct variations in the manner in which the similarity measure is

employed. However, a common characteristic among all these approaches is the absence

of a predetermined communication mixing matrix. Instead, each agent engages in com-

munication with randomly selected peers, thereby implying that every agent possesses a

comprehensive overview of the entire network.

In each round of the PENS approach, a specific number of peers, denoted as nsamped, are

selected and their models are retrieved. These models are then used to assess empirical

loss on the local training data. Among the sampled peers, only the top m peers with

the lowest empirical loss values, indicative of similar data distributions, are chosen as
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potential peers and their models are aggregated with the agent’s local model. After

a predetermined number of rounds, each agent continues to randomly sample m peers

from a pool consisting of those peers who have been selected as potential peers more

frequently than expected. The expected frequency is calculated as m/N × rounds, where

N represents the total number of agents in the network.

The PENS method laid the groundwork for DAC, which maintains a comprehensive

list of similarity values derived from the reciprocal values of empirical loss measurements.

These similarity values serve as the basis for determining the probability of peer sampling

in subsequent rounds. DAC uses an adaptive strategy to deal with the problems that

come up with large peer-to-peer networks. During communication, it asks sampled peers

for their similarity values. This means that DAC covers not only the peers with whom

direct communication has occurred but also extends its reach to peers that were previously

unexplored or had not been directly communicated with.

Similarly to the PENS approach, the PANM method requires a predetermined number

of rounds to determine similar peers by considering peers from the previous round along

with new peers, but only aggregating models from the top m preforming models. In the

second stage, PANM samplesm peers from a peer bag, which is updated periodically every

τ rounds by sampling nsampled peers from the peer bag and nsampled randomly sampled

peers. The expectation maximization of the Gaussian mixture model is used to determine

new peer bag based on the model similarities expressed as empirical losses on training

data. The PANM version that utilizes empiciral loss as a measure of similarity is referred

to as PANMLoss.

L2C approach utilizes a learnable vector of mixing weights that is maintained by

each individual agent. After requesting models from peers, an agent updates the mixing

weights vector based on the empirical loss of each received model on the validation data.

In the first T0 rounds, each agent pulls models from all peers, after which each agent stops

communicating with K0 peers corresponding with the smallest mixing weight wi,j.

In DiPLe, each agent maintains a mixing weight vector w. At the beginning of training,

an agent communicates with all peers in the network. After pooling models from peers

where w > 0, each agent utilizes a bisection method with threshold ϵ to minimize the

empirical risk, where if wi,j <
ϵ
2
, then wi,j = 0.
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Model parameter similarity. PANM also introduced PANMGrad, a more efficient

method of calculating model similarity, whereby a cosine similarity is utilized to express

similarity between gradients. However, the PANMGrad method requires both current

gradients g and accumulated weight deltas h to calculate the similarity as follows:

Si,j = α cos θg + (1− α) cosh, cos θg =
⟨gi, gj⟩

∥gi∥ · ∥gj∥
, (3)

cos θh =
⟨hi, hj⟩

∥hi∥ · ∥hj∥
. (4)

Model prediction similarity. AUCCCR algorithm [39] can infer the number of clus-

ters from the data without requiring a pre-determined number of clusters. Even though

AUCCCR is a clustering method similar to K-Means, we can also consider it a clustering

method based on parameter similarity. In their experiments on the MNIST dataset [10],

the authors obtained the average output of agents’ models for each of the ten classes in the

MNIST dataset, using the first 1000 images from the test split. The average outputs of

the ten classes were concatenated in one R100 vector. These vectors were used as the input

to the AUCCCR clustering algorithm, with the Euclidean distance used as the measure

of distance between two vectors. The output of the algorithm is clusters of agents with

similar model predictions.

4.2. Dataset similarity

D-Cliques [3] method designs a communication matrix based on label distribution

between different local datasets which groups agents into cliques with a maximum size of

M . Cliques are formed by iterative Greedy swap approach that randomly swaps a pair

of agents between cliques if the distribution skew is smaller after the swap. Let pC(y) =

1
|C|

∑
i∈C pi(y) denote the distribution of label y in clique C and p(y) = 1

N

∑
i∈N pi(y) the

distribution of label y in global distribution. The skew of clique C is measured as absolute

difference of pC(y) and p(y):
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skew(C) =
L∑
l=1

|pC(y = l)− p(y = l)| (5)

To ensure a global consensus and convergence, the D-Cliques approach introduces

inter-clique connections between a small number of agent pairs that belong to different

cliques.

In summary, the answer to RQ1 is that the autonomous personalized peer connec-

tions are based on the pull-gossip communication method [22], wherein agents pull model

parameters from peers. The similarity between agents can be based on empirical model

loss obtained on a subset of data, model prediction similarity, and dataset similarity.

5. Methodology

5.1. Methods selection criteria

In this study, we employed a systematic approach to selecting methods and algo-

rithms for evaluating autonomous personalized peer connection creation. The selection

process involved the following criteria to ensure fairness and relevance. We conducted a

comprehensive literature search using Scopus and WoS (article titles and abstracts) with

the query: TITLE-ABS((p2p OR peer OR agent OR decentralised OR decentralized) AND

(learning OR machine learning OR artificial intelligence OR training) AND (personalized

OR autonomous OR adaptive OR collaboration OR cooperation OR cluster)). This query

was designed to capture a broad range of relevant methodologies and algorithms related

to peer-to-peer and decentralized learning systems within the context of autonomous and

adaptive creation of peer connections in non-IID environments. By limiting the results to

conference papers and journal articles, 4,781 relevant documents were identified as results

for Scopus, and 18,945 for WoS. We also search through Google Scholar using similar

terms and conditions. Based on article titles and abstracts, we excluded studies that

are primarily concerned with Federated Learning or those that assume a fixed network
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topology. These studies were not considered relevant to our research focus, as they do not

align with the dynamic and adaptive nature of peer connection creation that this study

aims to explore. Furthermore, we also excluded results that do not align with the core

objectives of this study, which emphasizes the adaptation and personalization of peer con-

nections in a decentralized learning environment, focusing on non-IID data and with the

support for deep neural network models. To ensure thorough coverage, we also employed

forward and backward snowballing techniques. This involved examining the references

of selected papers (backward snowballing) and checking citations of these papers (for-

ward snowballing) to identify additional relevant studies. By adhering to these criteria,

we ensured that the methods evaluated in this study are both relevant and capable of

addressing the key aspects of autonomous and personalized peer connection creation in

non-IID environments.

5.2. Evaluation methodology

This study seeks to investigate and evaluate whether a substantial advantage exists in

a connection arrangement through any of the specified methodologies. Previous research

generally created a multi-task heterogeneous environment by image rotation or by creating

agent groups with disjoint label sets. For our analysis, all the methods mentioned are

compared on a computer vision task and a natural language processing task.

Agents’ learning process was simulated in memory in a synchronised manner since

all approaches presume a synchronised network. As a result, a cyclical process develops

in which a communication step follows each local training step, with these two phases

iteratively repeating. All approaches presume a pull-gossip [22] communication, which was

also utilized in the AUCCCR and baseline approaches. Once an agent pull models from

its peers, a new model is formed by aggregating all received models xi =
∑

{wij>0}wijxj.

Agent’s local test accuracy is measured after performing local SGD updates (i.e. an

epoch) for all evaluated methods.

Datasets. The evaluation of the assessed methodologies encompassed two distinct tasks:

image classification and next-word prediction (NWP). CIFAR-10 [26] dataset was used for

the image classification task with various image transformations that simulated different
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non-IID environments. The goal was to create non-IID clusters of agents that were defined

by using different transformation rules, such as label permutation, data segmentation, and

image rotation. CIFAR-10 consists of 60,000 32x32 color images in 10 different classes,

with 6,000 images per class. The dataset is divided into 50,000 training images and 10,000

test images. In the simulations, the dataset was divided uniformly between agents for

both training and test splits. Depending on the scenario, certain group of agents applied

specific image transformation rules, thereby creating synthetic non-IID environments in

which the data distribution between groups of agents is different.

The NWP experiments utilized the publicly accessible Reddit dataset [9], comprising

posts and comments from diverse individual internet users. The dataset is inherently

non-IID, as users in different subreddits often discuss different topics and share different

types of content. In the experiments, each agent’s dataset comprised all comments from a

unique user. The datasets were then partitioned into training, validation, and test subsets

in a 60%-20%-20% split [9]. Following established experimental protocols [17, 24, 54, 41,

46, 51], the vocabulary size was limited to the 10,000 most common words, resulting in

10,000 output classes for the model. Words outside this vocabulary were classified as out-

of-vocabulary tokens and excluded from prediction accuracy calculations. Sentences were

segmented into sequences of 10 words [51], with the model’s objective being to predict

the subsequent word. For sequences shorter than ten words, padding was applied on the

left-hand side.

The accompanying metadata, such as subreddit names, was considered when creating

groups of users sharing similar interests. Firstly, users that exclusively participated in a

single subreddit were identified. Filtering the users based on a minimum of 90% metadata-

related texts revealed that the four most popular subreddits were politics, leagueoflegends,

nba and Bitcoin. Each derived cluster consists of users with common interests within the

cluster, while exhibiting dissimilarity in interests with respect to all other clusters. For

instance, users who solely post in the politics subreddit forum may not share any common

interests with users who exclusively participate in the leagueoflegends forum.

Models. A simple CNN model was used to perform experiments on the CIFAR-10

dataset, as shown in Table 1. Although the size and architecture of this network may not

be considered state-of-the-art for visual classification tasks, it possesses adequate capacity
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to facilitate the comparison in the conducted experimental analysis. The RNN model

architecture presented in [51] was used for the NWP experiments. In order to perform a

next-word prediction task, sentences were segmented into sequences of ten tokens, with

shorter sequences padded as necessary. A batch size of 32 was employed for the image

classification task, and a batch size of 50 for the NWP task. The Adam optimizer [25]

was utilized by all agents, with a learning rate of 1 × 10−3 for the image classification

task, and 5× 10−3 for the NWP task.

Table 1: Model architecture used for the CIFAR-10 experiments.

Layer Parameters
Conv2D filters = 6, kernel size = 5,

activation = relu
MaxPooling2D pool size = 3
Conv2D filters = 16, kernel size =

5,
activation = relu

MaxPooling2D pool size = 3
Flatten
Dense units = 128, activation =

relu
Dense units = 10, activation =

softmax

Baselines and communication parameters. A fixed random sparse topology was

used as a baseline environment in which all agents communicated mutually, regardless of

the agent’s cluster affiliation. Additionally, results of oracle training wherein agents only

collaborate with fixed peers that share the same data properties (e.g. image rotation)

are provided. The number of neighbor peers was set to three and specific parameters of

individual methods were adjusted accordingly. For PENS and PANM, the number of first

stage rounds was set to 100 as in [38] and [30], and the nsampled number of sampled peers

was set to 6 with the parameter top m set to three. In accordance with the configuration

employed by the authors, communication was terminated with 96 peers (denoted as K0)

after 10 rounds (designated as T0) within the L2C approach. A fully connected inter-clique

topology was used with D-Cliques as it achieved the best results in the experiments [3].

In a fully connected inter-clique topology, each clique has exactly one edge connection

with each of the other cliques, spreading these additional edge connections equally among

the agents of a clique. Following the experiments conducted in the D-Cliques study,

maximum clique size M was set to 10. In the AUCCCR method, inter-agent connections
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were randomly established exclusively within individual clusters, with no connectivity

established between agents situated in distinct clusters.

Metrics. Average User model Accuracy (UA) [35] metric was used to measure the overall

learning process performance. UA measures the average accuracy across all agents on their

local test data and can be expressed as:

UA =
1

n

n∑
i=1

acci (6)

where acci is the prediction accuracy of model i on local test dataset i (both owned by

agent i). Prediction accuracy is calculated as the fraction of correct predictions (TP and

TN) over total predictions (TP, TN, FP, and FN):

acci =
TPi + TNi

TPi + TNi + FPi + FNi

. (7)

Considering the distinctive peer selection protocols employed in the examined meth-

ods, a communication analysis was conducted to evaluate the equitable distribution of

communication load and answer RQ2. To quantify this communication equilibrium, the

Gini coefficient, a commonly employed inequality measure in economics and social statis-

tics, was used to answer the RQ3. The Gini coefficient, already previously utilized to

measure centralization in decentralized systems [40, 8, 27], spans from zero, denoting

perfect equality, to one, indicating near-maximal centralization where all communication

is directed to a single peer. Finally, the Pareto analysis was used to discern optimal

solutions within the conducted experiments and answer RQ4.

6. Experiments

The experiments involved varying numbers of agents, ranging from 100 to 200, based

on specific experimental conditions. The learning process concluded with the attainment

of accuracy convergence. Each experiment was run three times, and the resulting average

was considered the result. Experiments employing two and four clusters were conducted
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for the image classification and next-word prediction task. Within the synthetic non-IID

environment experiments involving the image classification task, agents shared identi-

cal data distribution and transformation characteristics within each cluster. Conversely,

within the realistic non-IID environment experiments involving the next-word prediction

task, the categorization of agent clusters was predicated upon the agent’s pertinent meta-

data, the subsidiary thread for the Reddit dataset.

6.1. Results in a synthetic non-IID environment

Agents within a cluster were provided with a customized CIFAR-10 dataset to simu-

late a synthetic non-IID environment. The customized datased encompased transforma-

tions such as image rotation [15, 38, 30], and label-swapping [43, 30] or modifications to

data partitioning [34, 21, 60]. In experiments involving two clusters, half of the agents

were provided with unmodified CIFAR-10 data, whereas the other half received modified

CIFAR-10 data. Similarly, in experiments involving four clusters, a quarter of the agents

were assigned regular CIFAR-10 data, while the remaining three quarters were distributed

into distinct groups, each of which received differently altered CIFAR-10 data. An exam-

ple of data for two agents from the experiments involving two clusters and rotations of

0°and 180°is illustrated in Figure 4. The agent belonging to the first cluster has images

without any rotation applied, while the agent from the second cluster has all images ro-

tated by 180°. It is important to note that referencing an agent as part of a cluster solely

indicates its data distribution and heterogeneity. The agents’ responsibility remains to

autonomously create personalized peer connections among themselves, regardless of the

agents’ cluster.

Figure 4: Example datasets for two agents from the experiments involving two clusters
with rotations of 0°and 180°. The first agent’s dataset includes images with no rotation,
while the second agent’s dataset consists of images rotated by 180°.
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Each experiment was conducted with two different numbers of training examples Ts

available to each agent. Specifically, Ts was set to 100 for experiments involving agents

with limited local data, while Ts was set to 400 for experiments involving agents with

a large volume of local data. It is important to note that all experiments involved 100

agents, with 50 agents per cluster in two-cluster experiments and 25 agents per cluster in

four-cluster experiments.

Image rotation. The image rotation experiment aims to evaluate and compare studied

methods in an environment where agents own different features (rotation) associated

with the same label [33]. In the experiments involving two distinct clusters, rotations {0°,

180°} were used to alter each cluster’s data. Agents belonging to the first cluster were

allocated the unaltered data, while agents within the second cluster were provided images

subjected to a 180° rotational transformation. For the experiments involving four clusters,

rotations {0°, 90° 180° 270°} were used to alter agents’ data within each cluster. Table

2 summarizes the results for all evaluated methods. As expected, agents achieved higher

accuracy when using the oracle communication topology compared to the sparse topology.

We can conclude that randomly forming connections between peers is not beneficial in

the context of image rotation experiments. Therefore, evaluated methods should surpass

results obtained in the sparse experiments to be deemed effective. In the two-cluster

experiments, AUCCCR, PANMGrad, PANMLoss, and PENS outperformed the sparse

Table 2: Results on the CIFAR-10 dataset, with rotations {0°, 180°} applied in the
two-cluster environment and rotations {0°, 90° 180° 270°} applied in the four-cluster
environment. Highlighted results indicate performance surpassing the Sparse baseline.
Methods that outperformed the Sparse baseline in all scenarios are also emphasized.

{0°, 180°} {0°, 90°, 180°, 270°}
Method Ts=100 Ts=400 Ts=100 Ts=400
Oracle 43.80 49.44 41.52 46.79
Sparse 40.94 46.16 36.41 41.96
AUCCCR 41.33 49.22 33.85 42.61
DAC 40.61 47.98 36.32 42.61
D-Cliques 33.69 27.16 28.97 16.77
DiPLe 39.51 49.35 35.50 44.80
L2C 33.05 42.83 29.11 42.12
PANMGrad 41.12 49.62 36.56 45.48
PANMLoss 41.11 49.67 36.51 46.17
PENS 41.29 48.06 36.46 42.74
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baseline in both limited (TS = 100) and extensive (TS = 400) training set scenarios. DAC

and DiPLe achieved superior performance only in the extensive training set scenario, while

D-Cliques and L2C performed substantially worse than the sparse baseline. PANMGrad,

PANMLoss, and PENS methodologies performed better than the sparse baseline across

both limited and extensive training set scenarios in the four-cluster experimental settings.

Conversely, AUCCR, DAC, DiPLe, and L2C demonstrated superiority over the baseline

solely in the scenario with a larger training set. Notably, D-Cliques consistently exhibited

markedly inferior performance in both scenarios. Overall, PANMGrad, PANMLoss, and

PENS emerged as consistently effective methodologies across all examined scenarios in

this experiment.

Label swap. The primary aim of the label swap experiment is to assess the perfor-

mance of analyzed methods within a scenario in which agents possess identical features

(images) that are associated with distinctly different labels [33]. Similarly to the previous

experiment, agents’ data within each cluster was modified by performing label swaps.

Transformation {None, [0, 2]} was used in the two-cluster setting in which the agents

belonging to the first cluster were allocated the unaltered data, while the second cluster’s

agents were provided with data where class index 0 was switched with class index 2, and

vice versa. The described approach was also followed in the four-cluster setting using

the following label swaps {None, [0, 1], [2, 3], [4, 5]}. As Table 3 shows, agents achieved

Table 3: Results on the CIFAR-10 dataset, with label swaps {None, [0, 2]} applied in
the two-cluster environment and label swaps {None, [0, 1], [2, 3], [4, 5]} applied in the
four-cluster environment. Highlighted results indicate performance surpassing the Sparse
baseline.

{None, [0, 2]} {None, [0, 1], [2, 3], [4, 5]}
Method Ts=100 Ts=400 Ts=100 Ts=400
Oracle 43.98 49.90 40.72 46.83
Sparse 45.51 50.77 42.10 48.53
AUCCCR 42.21 49.83 37.58 45.21
DAC 44.82 49.41 42.02 46.28
D-Cliques 36.59 30.46 32.36 26.49
DiPLe 44.73 54.92 40.57 51.86
L2C 36.29 43.68 33.20 43.13
PANMGrad 45.34 52.10 42.40 49.77
PANMLoss 45.47 49.92 42.17 46.32
PENS 45.52 52.17 42.35 48.52
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higher accuracy when using the sparse communication topology as compared to the oracle

topology. Contrary to the image rotation experiments, within the context of label swap

experiments, randomly forming connections between peers enabled agents to achieve bet-

ter results. DiPLe demonstrated consistent superior performance in scenarios with a large

training dataset. Conversely, PANMGrad exhibited enhanced performance compared to

the baseline in all scenarios except for the two-cluster setting with limited training data.

PENS performed well overall but exhibited slightly lower performance, specifically in the

four-cluster scenario with a large training dataset. PANMLoss showcased marginal per-

formance improvements over the baseline solely in the scenario with a limited training

dataset in the four-cluster setting. In contrast, all other methods, including AUCCCR,

DAC, D-Cliques, and L2C, consistently exhibited lower performance across all scenarios.

Partition data. Experiments involving partitioned data assess the performance of stud-

ied methods under label distribution skew [33]. The evaluated methods were assessed

across three distinct scenarios: 1) a two-cluster setting with one exclusively containing

animal samples and the other exclusively containing vehicle classes [60]; 2) pathological

non-IID data setting [34] where the dataset is partitioned such that each agent is allocated

with samples of only two out of ten possible classes; 3) practical non-IID data setting [21]

where the data is distributed among agents in a way that ensures each agent possesses

data from all classes, albeit with varying class distributions, resulting in some classes

Table 4: Results on the CIFAR-10 dataset with different non-IID data partitioning meth-
ods applied in the two-cluster and five-cluster environments. Highlighted results indicate
performance surpassing the Sparse baseline. Methods that outperformed the Sparse base-
line in all scenarios are emphasized.

{Vehicles, Animals} Pathological non-IID Practical non-IID
Method Ts=100 Ts=400 Ts=100 Ts=400 Ts=100 Ts=400
Oracle 55.18 61.22 83.73 84.83 40.83 67.70
Sparse 49.70 55.87 76.68 57.68 48.21 67.50
AUCCCR 55.07 61.45 83.50 83.82 42.38 67.48
DAC 52.11 56.84 79.10 75.54 47.74 64.80
D-Cliques 49.79 53.76 34.29 29.48 42.31 35.10
DiPLe 52.74 61.18 77.14 54.13 48.22 71.09
L2C 46.59 55.36 77.70 76.28 38.70 70.65
PANMGrad 55.85 62.43 79.70 78.49 48.98 69.37
PANMLoss 55.27 61.89 83.68 86.84 48.93 68.95
PENS 52.25 58.84 77.81 72.33 48.72 68.94
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having higher probabilities than others. Five distinct clusters are formed in both patho-

logical and practical non-IID scenarios. Table 4 presents the results of the experiments.

In all scenarios except practical non-IID with limited training data, agents demonstrated

superior accuracy when employing the oracle communication topology as compared to

the sparse topology, suggesting that random communication between agents is not ben-

eficial under disjoint label distribution skew. The AUCCCR method exhibited superior

performance compared to the baseline in the two-cluster and pathological non-IID set-

tings. However, it yielded unsatisfactory results in the pathological non-IID scenario.

DAC demonstrated enhanced performance over the baseline across all scenarios except

for the pathological non-IID environment in the scenario with a large training dataset.

Similarly, DiPLe outperformed the baseline in all scenarios, except for the pathological

non-IID environment in the scenario with a large training dataset. The L2C method dis-

played lower performance in the limited training set scenarios within the two-cluster and

pathological non-IID environments. The D-Cliques method failed to surpass the baseline

in most scenarios, barring the two-cluster setting with limited data, potentially due to

the restricted size of the clique groups (M = 10). Notably, PANMGrad, PANMLoss,

and PENS consistently outperformed the baseline in all examined scenarios, exhibiting

effectiveness across the experiment’s diverse settings.

Communication analysis. Communication analysis covers all experiments conducted

in the synthetic non-IID environment. The results were categorized by distinct training

set scenarios (Ts) due to the closely aligned outcomes observed across various cluster

counts. The Gini coefficient values for the topologies employed in oracle, sparse, and

AUCCCR experiments yielded a Gini coefficient 0, indicating perfect communication bal-

ance. Notably, methods D-Cliques, DiPLe, PANMGrad, PANMLoss, and PENS exhibit

Gini coefficients below 0.1 in both limited (TS = 100) and large (TS = 400) training set

scenarios. This signifies an equitable distribution of communication load among agents,

providing reassurance about the fairness of these methods. High Gini coefficients were

obtained for DAC (gini > 0.2) and L2C (gini > 0.4) for both training set scenarios,

implying centralized communication tendencies as agents predominantly source messages

from a restricted peer set. All methods were adjusted to maintain communication with

approximately the same number of peers, as previously detailed in Section 5. Compared
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to the baseline sparse topology, AUCCCR, DAC, PANMGrad, and PANMLoss methods

exhibit similar message communication frequencies. In contrast, the PENS method shows

a 15% increase, while the L2C method demonstrates a 48% increase in message communi-

cation. D-Cliques and DiPLe methods display significant inefficiencies in communication

load, with D-Cliques experiencing a 50-fold increase and DiPLe demonstrating a 6-fold

increase in message communication.

Pareto analysis. Optimal solutions in each experiment were identified by applying the

Pareto method. Scenarios within each experiment were grouped based on the number of

clusters by taking the mean of the scenarios with limited and large set of training data.

The optimal solutions residing on the Pareto front were discerned through an analysis of

the top UA and the mean number of agent messages needed to achieve these outcomes.

103104

Number of messages per agent

30

32

34

36

38

40

42

44

46

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(a) Rotation - 2 clusters

103104

Number of messages per agent

25

30

35

40

45

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(b) Rotation - 4 clusters

103104

Number of messages per agent

34

36

38

40

42

44

46

48

50

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(c) Swap - 2 clusters

103104

Number of messages per agent

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(d) Swap - 4 clusters

103104

Number of messages per agent

51

52

53

54

55

56

57

58

59

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(e) Partition - 2 clusters

103104

Number of messages per agent

30

40

50

60

70

80

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(f) Pathological non-IID

103104

Number of messages per agent

40

45

50

55

60

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(g) Practical non-IID

103104

Number of messages per agent

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

Ac
cu

ra
cy

Pareto front
Oracle
Sparse
AUCCCR
DAC
D-Cliques
DiPLe
L2C
PANMGrad
PANMLoss
PENS

(h) Experiments average

Figure 5: Methods on the Pareto front for all synthetic non-IID experiments.
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Figure 5 illustrates the Pareto optimal solutions. In the context of rotation experiments,

optimal solutions in the two-cluster scenario included oracle, AUCCCR, PANMGrad, and

PANMLoss, whereas in the four-cluster scenario, only oracle and AUCCCR were iden-

tified as optimal. In both two-cluster and four-cluster scenarios involving label swap

experiments, oracle, PANMGrad, PANMLoss, and DiPLe emerged as optimal solutions.

Additionally, PENS demonstrated noteworthy performance by residing on the Pareto

front in the two-cluster experiment. PANMGrad emerged as the optimal solution in the

partition experiments across all scenarios. Furthermore, additional solutions residing on

the Pareto front include DAC in the two-cluster scenario, PANMLoss in the pathological

non-IID scenario, and DiPLe in the practical non-IID scenario. Throughout all exper-

iments, PANMGrad and PANMLoss consistently emerged as the optimal solutions on

average, providing a clear conclusion to our research. The PANM method is the most

effective in synthetic non-IID environments involving an image classification task.

6.2. Results in a realistic non-IID environment

As previously mentioned, agents were selected based on the subreddit topic to which

they exclusively contributed, resulting in four distinct agent clusters whose members

share similar interests. Experiments were performed for each pair of clusters alongside

an experiment involving all four clusters combined, resulting in seven distinct scenarios.

Like the CIFAR-10 assessments, the learning methodologies were assessed across limited

and extensive quantities of local agent data. In the Reddit dataset, variations in sample

sizes per agent led to limited local data experiments encompassing user data with sample

numbers (Ts) between 300 and 700. In contrast, large local data experiments involved

users with sample numbers (Ts) ranging from 1000 to 5000. Experiments with two clusters

comprised 100 agents, whereas experiments with four clusters comprised 200 agents (50

per cluster in all scenarios).

The AUCCCR method was excluded from the subsequent experiments due to its

demand for vector sizes proportional to the square of the number of classes. For the NWP

task involving 10,000 classes, this resulted in excessively large vectors that exceeded the

storage capacity of the available 64GB of RAM.
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Table 5: Results on the Reddit dataset with two and four cluster experiments under
small and large local data quantities scenarios. Highlighted results indicate performance
surpassing the Sparse baseline. Methods that outperformed the Sparse baseline in all
scenarios are emphasized.

2-cluster average 4-cluster
Method 300 < Ts < 700 1000 < Ts < 5000 300 < Ts < 700 1000 < Ts < 5000
Oracle 6.48 8.11 6.40 8.10
Sparse 6.72 8.35 6.76 8.65
DAC 7.20 8.94 7.33 9.20
D-Cliques 5.60 8.92 8.58 10.70
DiPLe 7.37 9.98 7.65 10.50
L2C 6.12 7.64 6.85 10.50
PANMGrad 7.10 8.56 7.22 8.82
PANMLoss 5.86 7.13 6.02 7.39
PENS 7.14 8.52 7.31 8.82

Results analysis. Table 5 displays the results obtained from all experiments using the

Reddit dataset. Experiments with two clusters were consolidated as they produced com-

parable accuracies. A comparison between the baseline sparse and the oracle topology

reveals that higher accuracies are attained when connections are formed randomly, con-

sistent with the findings from synthetic experiments involving label swaps. DAC, DiPLe,

PANMGrad, and PENS consistently outperformed the sparse baseline in all scenarios.

Furthermore, D-Cliques underperformed only in the two-cluster scenario with limited

data. L2C exhibited superior performance over the baseline solely in the four-cluster

scenarios, while PANMLoss consistently underperformed across all scenarios.

Communication analysis. The communication analysis encompasses all experiments

conducted in the realistic non-IID environment, grouped by distinct training set sce-

narios (Ts) due to observed closely aligned outcomes across various cluster counts. Fixed

topologies utilized in oracle and sparse experiments yielded a Gini coefficient 0, indicating

perfect communication balance. Methods DAC, D-Cliques, and DiPLe demonstrated Gini

coefficients below 0.1 in both limited (300 < Ts < 700) and large (1000 < Ts < 5000) train-

ing set scenarios, suggesting equitable communication load distribution among agents. On

the other hand, PENS (gini > 0.2) and L2C (gini > 0.3) consistently exhibited high Gini

coefficients across both training set scenarios, indicating a tendency towards centralized

communication. This suggests potential challenges in maintaining a balanced communica-

tion load in these methods. PANMLoss exhibited a Gini coefficient exceeding 0.1 in both

training set scenarios. At the same time, PANMGrad showed a Gini coefficient below
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0.1 in the limited training set scenario but demonstrated higher centralization properties

(gini > 0.2) in the large training set scenario.

Compared to the baseline sparse topology, both PANMGrad and PANMLoss methods

reduced message communication frequencies, whereas DAC and PENS methods displayed

similar communication frequencies. D-Cliques exhibited an average 80-fold increase over

the sparse baseline, while L2C experienced an average 12-fold increase. Additionally,

DiPLe demonstrated an average 6-fold increase in message communication.

Pareto analysis. Optimal solutions in the realistic non-IID environment were identified

through the application of the Pareto method. Scenarios were analyzed separately for

different cluster numbers and distinct training set scenarios. The solutions residing on

the Pareto front were discerned through an analysis of the top UA and the mean number

of agent messages needed to achieve these outcomes. Figure 6 illustrates the analysis of

Pareto front optimal solutions. In all experiments, DAC and DiPLE consistently emerged

as solutions located on the Pareto front. In the two-cluster scenario with limited data, ad-

ditional solutions included L2C, PANMGrad, and PANMLoss. In the two-cluster scenario

with a large dataset, additional solutions were oracle and sparse. For the four-cluster sce-
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Figure 6: Methods on the Pareto front for all realistic non-IID experiments.
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nario with limited data, additional solutions comprised oracle, D-Cliques, PANMGrad,

and PANMLoss. In the four-cluster scenario with a large dataset, additional solutions

were oracle, D-Cliques, and PANMGrad. Overall, oracle, DAC, DiPLe, PANMGrad,

and PANMLoss were identified as residing on the Pareto front for the realistic non-IID

environment involving the Reddit dataset.

6.3. Results summary

The following analysis encompasses synthetic and realistic non-IID experiment results

to answer our research questions.

Research question RQ2 investigates the communication efficiency of the analyzed

methods. All methods were adjusted to maintain communication with approximately

the same number of peers in terms of the number of exchanged messages. Compared

to the baseline sparse topology, AUCCCR, DAC, PANMGrad, and PANMLoss methods

exhibit similar message communication frequencies, while the PENS method shows a 15%

increase. The L2C method demonstrates a 48% increase in message communication in

synthetic non-IID environments and a 12-fold increase in realistic non-IID environments.

D-Cliques and DiPLe methods display significant inefficiencies in communication load,

with D-Cliques experiencing a minimum 50-fold increase and DiPLe demonstrating a

6-fold increase in message communication.

Regarding RQ3, which addresses the centralization tendencies of the analyzed meth-

ods, the Gini coefficient values for the topologies utilized in the oracle, sparse, and AUC-

CCR experiments unsurprisingly yielded a coefficient of 0, indicating perfect communi-

cation balance. Methods D-Cliques and DiPLe demonstrated Gini coefficients below 0.1

in synthetic and realistic non-IID environments, indicating an equitable distribution of

communication load among agents. Furthermore, PANMGrad, PANMLoss, and PENS

exhibited Gini coefficients below 0.1 in the synthetic non-IID environment but showed

increased coefficients (Gini ¡ 0.3) in the realistic non-IID environment, suggesting higher

centralization tendencies. While DAC demonstrated a Gini coefficient below 0.1 in the

realistic non-IID environment, it exhibited a higher coefficient for synthetic non-IID envi-

ronments. Conversely, the L2C method showed high centralization tendencies in synthetic
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and realistic non-IID environments.

We have the following insights to answer RQ4, which inquires about the best balance

between communication efficiency and overall improved learning outcomes for agents.

Overall, in experiments regarding the synthetic non-IID environment, PANMGrad and

PANMLoss methods were identified as the optimal solutions, suggesting their effectiveness

in image classification. The low communication requirements per agent and low central-

ization properties deemed the PANM method a superior approach in synthetic non-IID

environments compared to the sparse baseline, even outperforming the oracle reference.

In the experiments involving the next-word prediction task on a realistic non-IID dataset,

the oracle, DAC, DiPLe, PANMGrad, and PANMLoss methods were identified as residing

on the Pareto front. DiPLe was found to be very inefficient regarding the communica-

tion load for agents, which significantly diminishes its applicability in realistic scenarios.

DAC, PANMGrad, and PANMLoss demonstrated comparable communication loads per

agent as the sparse baseline, with DAC displaying low centralization tendencies, while

PANMGrad and PANMLoss exhibited higher centralization properties. Given the com-

munication load on agents and the observed centralization tendencies, the PANM method,

in both its gradient-based (PANMGrad) and loss-based (PANMLoss) variants, emerges

as the optimal choice in the conducted experiments.

7. Conclusion

This study investigated communication-efficient peer-to-peer learning methodologies

within the context of non-IID data distributions, focusing on the autonomous creation of

connections between agents. Study methods were analyzed and compared through a series

of experiments varying in cluster counts and dataset sizes. Findings obtained through the

experiments identified several methods as optimal while also identifying shortcomings

of other methods. Methods PANMGrad and PANMLoss emerged as optimal solutions

under synthetic and realistic non-IID environments, while DAC and DiPLe emerged as

the optimal solutions in the realistic non-IID environment.

Communication analysis showed that the number of messages sent varied significantly
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between the different methods. For example, D-Clique, DiPLe, and L2C always required

the most messages to reach convergence. Additionally, the calculation of the Gini co-

efficient revealed distinctive communication patterns. Specifically, L2C exhibited high

centralization tendencies in synthetic and realistic non-IID environments. DAC displayed

heightened centralization tendencies solely in the synthetic environment, while PENS

showed similar tendencies exclusively in the realistic environment.

Given the communication load on agents and the observed centralization tendencies,

the PANM method, in its gradient-based (PANMGrad) and loss-based (PANMLoss) vari-

ants, emerges as the optimal choice in conducted experiments.

Future investigations in this domain aim to refine and extend the methodologies ex-

plored in this study. One potential direction for further exploration involves enhancing

existing techniques, such as the PANM method, to mitigate any shortcomings identi-

fied during experimentation. Researchers could focus on developing modifications that

maintain or enhance communication efficiency and avoid exacerbating centralization ten-

dencies. All examined methods necessitate access to the complete network, encompassing

all agents, particularly in the initial phases. However, this assumption could be more

practical for large, volatile, decentralized systems with a high churn ratio. Hence, fu-

ture investigations should develop communication-efficient methods that enable agents to

identify similar peers without communicating with the entire network.

In terms of communication efficiency, methodologies reliant on measuring agent sim-

ilarity based on model loss demonstrate superior efficiency compared to the PANMGrad

method. The latter exchanges current gradients and accumulated weight deltas, substan-

tially increasing communication. An additional avenue for exploration involves investi-

gating whether the loss similarity metric can be substituted with the similarity between

model predictions. Measures such as cosine similarity or Euclidean distance could be

applied, as in the AUCCCR method.

Another promising direction for future research involves investigating peer-to-peer

learning methodologies in more challenging non-IID scenarios, such as those involving dy-

namic or adversarial data distributions. The challenge posed by adversarial agents persists

as an active area of research, extending to Federated Learning, where diverse methods

have been proposed to address potential attacks [2, 16, 49]. Adversarial attackers’ ob-

jective is to inject triggers that cause targeted misclassifications without compromising
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model accuracy or disrupting convergence, which is quite challenging. In classification

applications, adversary attacks can involve adding extra patterns to benign images for

vision tasks or appending trigger strings for NLP tasks, deliberately causing the classifier

to misclassify. These attacks could have severe consequences in scenarios where accurate

classification is paramount. Current approaches are unlikely to detect such attacks with

loss similarity metrics in place. Understanding how different methodologies perform un-

der these dynamic and challenging conditions could provide valuable insights into their

robustness and adaptability limits.

References

[1] Mohammed Aledhari et al. “Federated Learning: A Survey on Enabling Technolo-

gies, Protocols, and Applications”. In: IEEE Access 8 (2020), pp. 140699–140725.

issn: 2169-3536. doi: 10.1109/ACCESS.2020.3013541.

[2] Eugene Bagdasaryan et al. “How To Backdoor Federated Learning”. In: Proceed-

ings of the Twenty Third International Conference on Artificial Intelligence and

Statistics. Ed. by Silvia Chiappa and Roberto Calandra. Vol. 108. Proceedings

of Machine Learning Research. PMLR, Aug. 2020, pp. 2938–2948. url: https:

//proceedings.mlr.press/v108/bagdasaryan20a.html.
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D. Supplemental Materials

This appendix contains supplementary materials in the form of a link to a public

GitHub repository. The repository includes instructions and reproducible code for all

experiments conducted in this doctoral thesis and published articles listed in Appendixes

A, B, and C: https://github.com/fipu-lab/p2p_bn.
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