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Radmile Matejčić 2, 51000 Rijeka, Croatia

Email: sasa.tokic@inf.uniri.hr

Abstract—The use of spatiotemporal data in football is
multiplying in the last few years with the advancement
of technology and the application of machine learning
on this data is a growing trend both in research and
practical applications in football clubs. This paper presents
an overview of recent research and discusses the types and
availability of data applicable for machine learning with
a focus on spatiotemporal data in football. This paper
provides guidelines for future research and application
of new deep neural network-based approaches for sports
analytics.
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I. INTRODUCTION

Sports analytics has been an ever-evolving field
since ”Moneyball” [1] introduced the statistics-
based approach for selecting baseball players. While
many sports including football (soccer in the United
States) have been data-rich for decades, most of this
data was match sheet data or simple statistics that
provides a minimal view of the game and does not
help much in answering questions that are of interest
to club analysts.

Rapid gathering and usage of spatiotemporal data
in sports in the last decade represents a growing
interest among researchers, and could also be of
great practical application for (football) clubs. This
paper presents an overview of recent research and
discusses the types and availability of data applica-
ble for machine learning with a special attention on
spatiotemporal data in football.

While video analysis is still the de facto a stan-
dard in football analysis and scouting its application
brings out two major issues:

1) Time to watch and analyze videos by humans
takes a lot of time and cognitive effort, some-
thing which all but huge clubs can not afford

2) Video analysis by humans introduces cog-
nitive biases making the analysis subjective
rather than grounded in numbers

Spatiotemporal event data helps in answering
many practical questions of much interest in football
clubs like:

1) What is the probability of scoring a goal from
a given situation?

2) What is the value of a particular pass?
3) What are common tactics opponents use

against teams similar to ours?
4) Which player style is the most similar to the

player club lost due to transfer or injury?
In this paper, we focus on team sports, which we

define as any contact sport involving two teams and
an object, usually a ball or a puck, where the game’s
goal is to put a ball in the opponent’s goal. We will
focus on football while mentioning recent research
in basketball and hockey, given that the majority
of the state of the art results are coming from
researchers focused on these sports. Gudmundsson
[2] suggests that there has been little research in
football regarding spatially informed metrics and
poses a question if it is possible to develop similar
metrics like in other sports. While research since
that publication suggests that it is indeed possible
to derive new football metrics, we should note that
football has some significant differences compared
to other sports. Compared to basketball, football has
a much lower number of points scored per game,
affecting goal-related metrics and making them less
reliable.

This paper is organized as follows: first, we intro-
duce the domain of sports analytics and systemize
the types of data with the emphasis on data avail-
ability where we propose possible further research
in obtaining tracking data; second, we provide an
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overview of recent research in the field of sports
analytics with an emphasis on the spatiotemporal
data analysis in football; third we show an example
of applying deep learning architecture on event-
based tracking data; finally we provide a conclusion
of the current state and suggest further research
directions possible

II. DATA

Broadly speaking football related data can be
grouped into three categories (see Figure 1):

1) Match sheet data
2) Event data
3) Tracking data
Data is gathered and provided by specialized

providers. While the match sheet and statistics are
usually provided for free by various websites and
services like FBref [3] event and tracking data
are, in general, not free and available. Luckily for
researches, there are existing open datasets of event
data provided by Wyscout [4] and Statsbomb [5].

Tracking data include Opta [6], Signality [7],
SecondSpectrum[8], Metrica [9] and others.

To the best of our knowledge, Metrica Sports
provides the only two publicly available games
covered by tracking data. [9]. The recent addition to
this is nine matches of broadcast tracking data, that
is tracking data collected from commercial video
broadcast provided by SkillCorner [10]

Match sheet data provides a high-level summary
of the game or specific club/player during the game.
Most of this data is freely available, with some
providers even encouraging researchers to extract
data from their websites.

Even though many sources like FBref [3] provide
much more detailed statistical data (see Figure 2)
than usually found in match sheet data, such as
adding Expected Goals and Expected Assists, this
type of data still lack much of the granularity of
the other two data types typically used in football
analysis nor can this type of data, in authors opinion,
help clubs and scouts in answering practical tactics
related questions they have.

A. Data types
Spatiotemporal data represents a type of data

that consists of both time and space, as its name
suggests. in sports, this data is very granular, and it
usually represents 20-30Hz of data, meaning there

are 20-30 data points per second representing the
current positions of players and the ball or puck.

There are two types of data available for spa-
tiotemporal research: tracking data and event data.

Tracking data can be obtained in 3 ways; static
cameras on stadiums with human verification, track-
ing data from commercial video broadcasts and
tracking data from GPS devices.

Tracking data consists of many data points. Tack-
ing systems consisting of several cameras generate
this type of data, and it is a very low level with data
points usually 10-30Hz representing the player and
ball positions. While this data is precious, it is also
challenging for researchers to obtain the data due to
its high commercial value.

Event data is a more sparse type of data, similar
to tracking data; it consists of current player and
ball positions, but only after a particular event
happened like foul, goal, pass, or other. Although
this data also has an enormous commercial value,
there are already freely available datasets suitable
for research.

The biggest freely available dataset is described
by Pappalardo in [12] Data covers seven biggest Eu-
ropean leagues plus World Cup 2018 and European
cup 2016 as shown in Table I:

TABLE I. COMPETITIONS AND CORRESPONDING DATA [12,
TABLE 1.]

Competition #matches #events #players
Spanish first division 380 628.659 619
English first division 380 643.15 603
Italian first division 380 647.372 686
German first division 306 519.407 537
French first division 380 632.807 629
World cup 2018 64 101.759 736
European cup 2016 51 78.14 552

1.941 3,251,294 4.299

Event data consists of different types of events
like pass, foul, and others with subtypes like cross-
pass or simple-pass. Additionally, some providers
provide tags to each event which report more details
about a particular event

Event data is usually provided as JSON files or
via providers’ API as JSON responses (see Fig-
ure 3).

Differences in formats and data provided by vari-
ous providers represent one of the engineering chal-
lenges. While also having different data structures,
providers also might have different critical informa-
tion. One of the providers has more human entered
mistakes in their data than the other, resulting in
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Fig. 1. Broad categorization of football data [11, page 37.]

Fig. 2. Standard statistical data for Liverpool, season 20/21 [3, screenshot by author]
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skewed research data if the mistake is severe.
To deal with different vendors’ approach to event

data Decroos in [13] proposes ”SPADL” Soccer
Player Action Description Language) to unify and
represent the data in the same way, thus abstracting
away from specific vendor language and options.
While commercial vendors might be interested in
all the game events, research and clubs are usually
focused on action events. While the end of the game
is an ”event,” it does not carry much weight for
research purposes; thus, SPADL considers only real
actions like passes, which are of much interest not
only to researchers but also to club stakeholders.
Visualizing SPADL action can be seen in Figure 4.

SPADL defines different attributes as opposed to
commercial vendors, these include [14]:

1) Time: the time in the game when the action
occurred

2) StartLocation: the (x, y) location where the
action started

3) EndLocation: the (x, y) location where the
action ended

4) Player: the player who performed the action
5) Team: the player’s team
6) ActionType: the type of the action (e.g., pass,

shot, dribble)
7) BodyPart: the player’s body part used for the

action
8) Result: the result of the action (e.g., success

or fail)
Extracting tracking data from commercial video

broadcast provides another approach for obtaining
valuable tracking data while considering its limita-
tions. It would also lower the barrier of entry for
the general public interested in football analytics.

TABLE II. EVENT TYPES, SUBTYPES AND TAGS [12, TABLE
2.]

type subtype tags
pass cross, simple pass accurate, not accurate, key

pass, opportunity, assist, goal
foul no card, yellow, red, 2nd yel-

low
shot accurate, not accurate, block,

opportunity, assist, goal
duel air duel, dribbles, tack-

les, ground loose ball
accurate, not accurate

free kick corner, shot, goal kick,
throw in, penalty, simple
kick

accurate, not accurate, key
pass, opportunity, assist, goal

offside
touch

acceleration, clearance,
simple touch

counter attack, dangerous
ball lost, missed ball, inter-
ception, opportunity, assist,
goal

Fig. 3. Pass event example in JSON format [5, image created by
author]

Recent research by Johnson [16] in parsing player
tracking data in basketball, using a video feed from
a single non-stationary camera shows ninety four
point five percent of placing players within a foot
of their actual location. Although the research was
conducted on a basketball video feed, which is
different from the usual football feed, it indicates a

Fig. 4. Visualizing SPADL action sequence leading to a goal [15,
Image 2]
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promising direction for obtaining detailed football
tracking data. Combined with research from Ko-
morowski [17], where authors used a deep neural
network-based detector for detecting ball in videos,
we expect further advancement in this area.

On a similar note, extracting tracking data from
tactical cameras might produce more reliable data in
the football context. Tactical cameras are placed on
high positions on the stadiums, they are stationary,
and they capture the whole field and all twenty
two players and the ball from a single point. While
conventional methods for tracking objects in videos
could provide decent tracking accuracy, researchers’
problem is availability of such footage. Many sta-
diums are equipped with tactical cameras, but the
footage is usually not freely available. However,
there is public footage from tactical cameras for
matches in the Men’s World Cup 2018 (see Figure
5).

III. RELATED WORK

A. Game analysis, strategy and related tasks

Moreover, what seems to be of pressing issue
regarding current research involving tracking data is
the question of reproducibility. While researchers’
scientific integrity is not in question, it can pose
a significant reproducibility problem and throttle
future research.

Fernández et al. in [18] presents ”Soccermap”; a
fully CNN [19] architecture (see Figure 6) which
calculates probability surfaces of potential passes
(see Figure 8). The network was trained on high-
frequency tracking data. By changing the output
activation function, the authors conclude that the
same architecture can be applied to two different

Fig. 5. View from a tactical camera, Brasil - Belgium World Cup
2018 - created by author

problems; the estimation of pass-selection likelihood
and predicting the expected value of a pass.

Fig. 6. ”Soccermap” neural network architecture [18, Fig. 1]

Goes et al. in [20] analyzed 118 matches in the
Dutch first league using positional tracking data
collected at 10Hz. By applying unsupervised ma-
chine learning (KMeans), they identified dynamic
formations of teams to classify successful attacks.
They conclude that subgroup-level variables provide
more information than team-level variables and that
it is possible to identify those subgroups from po-
sitional tracking data. Practical applications of the
conclusion suggest that defenders creating space for
attackers are strongly dependent on those attacks’
success.

Verstraete et al. in [21] analyzed SoFIFA dataset
[22] as data tensor using CPD (canonical polyadic
decomposition) [23] to extract interpretable latent
structures. They show how grouping related skills
are possible by using discovered latent structures.
The authors also suggest that each player can be
summarized by using a linear combination of struc-
tures. By applying Tucker decomposition of a tensor
[24], authors elaborate on how a particular player’s
skills evolve with age. Interestingly Burzykowski in
[25] demonstrates model interpretability possibilities
on the same dataset.

Nunez and Dagnino in [26] applied often used
metrics in football, pitch control, expected posses-
sion value and expected goals in a weighted function
in order to create a competitive simulated game.
Their agent was able to rank in top one point
five percent in currently running Google Research
Football competition [27].

Liu et al. in [28] deployed Deep Reinforcement
learning [29] to extract complex dynamics from
spatiotemporal data in football. The author claims
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to have designed the most complex neural network
architecture deployed in sports to date; a stacked
two tower LSTM [30]. The network was trained on
4.5M action events from several European leagues.
Authors developed a new metric called GIM, which
correlates with standard success metrics in football
with the possibility to fine-tune the metric to a
specific league.

Decroos et al. in [31] constructed player vectors
by transformation of event data using non-negative
matrix factorization [32] producing a complete view
of a player’s style. In turn, these vectors can be used
in machine learning analysis in clustering, nearest
neighbor [33], or other suitable models for identify-
ing players with a similar style, which is a crucial
question in both scouting and game preparation.

Decroos et al. in [34] introduced a variation
on their previous work called Atomic-SPADL. The
main difference this model introduced is treating
all events as successful, meaning for example that
if the pass was intercepted by the opponent team
that creates a new event called ”interception.” While
using xT model as a benchmark, which has a Pear-
son correlation of 0.89, their new model produced
a Pearson correlation of 0.65. Although lower than
the benchmark the result was better than their pre-
vious work which combined VAEP and SPADL that
produced a Pearson correlation of 0.25. correlation
of 0.89

Beal et al. in [35] model 2018 FIFA World Cup
data as chains of interaction modeled as walks
within graphs. The authors tested various network
metrics to value players’ contributions and sets of
players based on such graphs. Authors conclude that
their model can produce similar team selection as
that of human coaches.

Pappalardo et al. in [36] developed ”PlayeRank” a
data-driven framework for role aware player perfor-
mance evaluation. Authors build a three-phase ap-
proach and utilize Linear Support Vector Classifier
(LSVC) [37] for the rating phase.

Groll et al. in [38] developed a hybrid model as
a combination of random forests [39] and Poisson
ranking. They have analyzed all matches from 4
FIFA World Cups from 2002 to 2014. The au-
thors used the upcoming 2018 world cup as an
independent test dataset and concluded that their
hybrid model has greater predictive power than other
methods, including betting odds.

Goes et al. in [40] analyzed a data-driven model

for measuring pass effectiveness in professional
football. Data used was tracking and pass data for
18 matches of 1 team in 2017–2018 Dutch premier
league. The authors developed two new metrics
for evaluating pass value while maintaining a goal
of not overvaluing forward passes. Methods used
were manual model creation and PCA (Principal
component analysis) [41].

Dick et al. in [42] applied deep reinforcement
learning [29] to learn valuations of multiple player
positioning using positional data. The data used was
tracking data at 25 Hz. The authors used a neural
network to learn value function while modeling
soccer matches as Markov processes similar to Yam
in [43] where the pass events were modeled purely
as Markov chains [44] to develop a ball progression
model to detect most valuable players in Europe.

Decroos et al. in [45] proposed an improvement
to VAEP model [46] which uses gradient boosting
tree [47] with 151 features by developing a Gener-
alized Additive Model (GAM) with 10 features thus
improving interpretability while maintaining similar
performances.

Bransen et al. in [48] introduces ECOM (Ex-
pected Contribution to the Outcome of the Match),
a new metric which aims to measure players’
contribution in creating goal-scoring chances while
valuing they are passed. Dataset used was event
data top 7 European leagues in 4 seasons, and
the method used was distance-weighted k-nearest-
neighbors search.

Zambom-Ferraresi et al. in [49] used the Bayesian
model averaging [50] to discover determinants of
sports performance in the top five European football
leagues during two seasons. Their results suggest
concrete attributes in sports performance analysis,
suggesting that attacking actions carry more value
than defensive ones.

Steiner et al. used positional data to estimate the
effects of contextual features on passing decisions
in football by employing first binary logistic regres-
sions [51] to test relations between predictors and
later regression models.

Pappalardo et al. in [52] used machine learning to
construct a prediction model that finds team ranking
in the future season by using data from previous
seasons. They have analyzed 10 million events from
the top 6 European leagues using OLS regression
and logit classification.

McHale et al., in [53], used tracking data at 10Hz
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and positional attributes of the players to identify
key players in a team. Their model utilizes the prob-
ability of a successful pass and network centrality
measures. For probability calculations, they show
that the generalized additive mixed model produces
good results. Authors suggest their findings could
help trainers and scouts identify vital players in
either opposition teams when recruiting new talents.

Giancola et al. in [54] focused on detecting events
in football broadcast videos in order to provide a
benchmark dataset for future research. They show
67,8 percent (mAP) performance in classification
using ResNet-152 features and average-mAP of 49.7
percent with good annotation and 40.6 percent using
weakly annotated data.

Decroos et al. in [55] developed a five-step pro-
cess to discover tactics of football teams in spa-
tiotemporal data. The dataset and approach were
evaluated on the 2015/16 English Premier League
event data. They approached the task by dividing
the event data into phases, clustering those phases
based on spatiotemporal components, ranking clus-
ters. This proceeded with mining clusters to identify
patterns and finally rank discovered patterns.

Decroos et al. in [56] developed ”SoccerMix,” a
technique for soft clustering that enabled probabilis-
tic representations of football actions using mixture
models. They elaborate on how their approach can
understand both teams’ styles and recognize how
one team can force opponents to change their typical
style.

Decroos et al. in [57] designed a three-step
approach for evaluating player performance. First,
like in their other work, they split event data into
phases, and by applying dynamic time warping, they
rate each phase. The last step rates the actions by
applying an exponential-decay-based approach. This
approach enables us to find top performing players
in a league or a particular match.

Steiner et al. in [58] applied regression model
with four input features like the openness of passing
lane, position to a ball carrier, spatial proximity,
and defensive coverage which multiplied by beta
coefficients calculated passing decision, that is to
whom the player is most likely to pass the ball.

Horton et al. in [59] showed a model that learned
to classify the quality of passes in football with an
accuracy of 85.8 percent, which was compared to
human observers. The model was based on computa-
tional geometry features fed into different classifiers

(MLR, SVM, RUSBoost...).
Brooks et al. in [60] describe a supervised ma-

chine learning model (L2-regularized Sup- port Vec-
tor Machine (SVM) model) [37] trained in event
data of the 2012/13 Spanish La Liga season to
rank players based on the value of their passes
alone. They create a value metric based on shot
opportunities created in connection to pass locations.
They conclude that predicting possession of the ball
at a specific location will end up with a shot to
the goal has an F-score of 0.31 and AUROC (Area
Under the Receiver Operating Characteristic Curve)
of 0.79.

Brooks et al. in [61] presented two approaches
to finding insights in a football game by focusing
on passes. The first experiment created heat-maps
for each team in their event data (2012/13 Spanish
La Liga). This is then used to create a unique team
identification by applying the KNN model [33] with
87 percent accuracy. They also demonstrate that
using supervised machine learning shots on goal can
be predicted from possession information.

McHale et al. in [62] presented a model for
identifying ability of football players to score goals.
The model was based on event data from 2 seasons,
and it was created as a mixed-effects model.

Bialkowski et al. in [63] on an entire season of
tracking data with about 400,000,000 data points
developed a method for analyzing both individual
players and teams using minimum entropy data
partitioning and expectation-maximization (EM) al-
gorithm [64], similar to k-means [65].

Bialkowski et al. in [66] presented a method for
identifying teams from spatiotemporal tracking data.
The authors applied the formation of a descriptor,
which was found by minimizing the entropy of
role-specific maps. Authors match descriptors and
multiplying it by LDA transformation with team
identity predicted by applying k-NN [33].

Bunker et al. in [67] applied neural network with
10 fold Cross-Validation for predicting outcomes of
football matches.

B. Game result prediction
Applying machine learning for result prediction

constitutes a separate direction entirely, in our opin-
ion, since it is not directly related to insights that
club stakeholders need. While at the same time
being an interesting research question for both aca-
demics and amateur gamblers. Here we briefly list
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work related to result prediction using machine
learning.

Tewari et al. in [68] developed a prediction system
for English Premier League by applying XGboost
[69], SVM [37], and Logistic regressions models
with XGboost having the best F-score.

Baboota et al. in [70] applied Gaussian naive
Bayes, SVM, Random forest, and gradient boosting
models to predict the outcomes of EPL matches.
The model with the best result was gradient boost-
ing achieved a ranked probability score of 0.2156
while the benchmark from betting organizations was
0.2012, meaning their model could not beat the
betting markets.

Razali et al. in [71] used Bayesian networks to
predict EPL matches in seasons 2010/11-13. By ap-
plying K-fold cross-validation, they calculated their
models’ accuracy to be 75.09 percent.

Danisik et al. in [72] constructed a neural network
based on the LSTM regression model with input
data taken from the video game ”FIFA” combined
with real-world matches. Their model with cross-
validation produced an accuracy of 52.479 percent,
slightly below bookmaker accuracy.

Cho et al. in [73] applied social network anal-
ysis of football passes and gradient boosting for
predicting match outcomes. In comparisons with
SVM [37], neural networks [74], decision trees, and
logistic regression [51], authors conclude that their
approach can provide an accurate prediction system
with accuracy varying from 0.38 to 0.75 depending
on the season the model was tested and the league’s
phase.

Ulmer et al., in [75], used seven different models
that were tested against the baseline model. Mod-
els included Gaussian Naive Bayes [76], Hidden
Markov Model, Multinomial Naive Bayes, RBF
SVM [77], Random forest [39], Linear SVM [37],
One vs. All SGD. Dataset consisted of 10 seasons
of EPL from 2002 till 2012, while the test dataset
was season 2013/14. Their best error rates came
from Linear classifier (.48), Random Forest (.50),
and SVM (.50).

IV. DEEP NEURAL NETWORK ON EVENT DATA

The more affordable access to event data than
tracking data, an exciting research direction is ap-
plying deep neural networks [74] on said data. An
example of such an experiment is shown by Pleuler
in [78] and verified by the author.

Fig. 7. Deep model architecture on World Cup 2018 event data [78,
Fig 2.]

This experiment is inspired by [18] taking into
account limitations of event data, mainly missing
information about the position of other players.

This model’s loss function is binary cross-entropy,
which is appropriate given that the result of a pass
event is either success or failure. The model was
trained on 30 epochs with an ”Adam” optimizer.

Compared to the original ”SoccerMap,” which
has 401,259 parameters, this architecture consists
of only 995 parameters . Even a relatively simple
architecture provides good results (see Figure 9)
in pass prediction probabilities (see Figure 8 as
an example), which suggests that other approaches
based on tracking data could be applied to event
data as well. Additionally, layers in this model were
reduced to 1/2 and 1/4 size of the original 104 x 68
size.

Fig. 8. Single pass probability surface [78, Fig 1.]
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Fig. 9. AUC of architecture tested on World Cup 2018 event data
[78, Fig 3.]

We propose further research based on this model
in two directions. First, the model should be com-
pared to simpler architectures and hyper-parameter
tuning should be done in order to improve pre-
diction accuracy. Second, this approach takes into
account individual pass events. We suggest that the
sequence of events, i.e., actions, can provide more
information about probabilities of successful passes
similar to the approach in [13]. With that in mind,
we hypothesize that converting event data to SPADL
actions and adapting architecture to accommodate
”previous” information for each pass should produce
higher total accuracy.

V. FUTURE RESEARCH

With recent publications, it is noticeable that the
trend of event and tracking data analysis in football
is shifting towards deep neural networks, while deep
reinforcement learning is shown in several papers
as a promising research direction. With Google and
Manchester City powered Kaggle competition just
recently [27] we expect more research in this area.

While there has been some research in using
generative adversarial networks in basketball like
[79] to the best of our knowledge, there is no sim-
ilar research in football, which is another possible
research direction.

Of much interest to the author is the possibility of
applying knowledge gained from real-world tracking
or event data in simulated environment like Google
Research Football [80] with a goal of developing a
realistic simulation. While the question of applicable

metrics is up to a debate we suggest comparing
such simulations against Google Research Football
competition [27] and current reinforcement learning
algorithms applied in [80]; Proximal Policy Opti-
mization (PPO) [81], Impala [82] and Ape-X DQN
[83].

Based on research in other sports like [84] and
current state of research in football we expect to see
much more focus on three key methods; deep neural
networks [74], deep reinforcement learning [29]
and generative adversarial network [85], example in
basketball in [79].

VI. CONCLUSION

Sports analytics, especially football analytics, at-
tracted much interest in the last years with var-
ious methods employed from classical statistical
approaches, through classical machine learning ap-
proach to most recent usage of deep neural networks
and deep reinforcement learning models. With simi-
lar sports approaches, mainly basketball and hockey,
we can expect many advances and more complicated
models deployed very shortly. The problem of data
availability remains to be solved. Some commercial
providers like Metrica Sports are trying to make
some datasets free and open for researchers. We
have no reason to believe that research will have
multiple tracking data games available in the near
time. While tracking data is not accessible to most
of the interested parties, event data is not only freely
available in limited amounts, as previously shown,
but it is also relatively affordable and accessible.
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