
Abstract - As  a  problem  that  resides at  the intersection
of  Computer  Vision  and  Natural  Language  Processing,
image captioning has witnessed a rapid progress in a very
short time, from initial template-based models to the current
ones, based on deep neural networks. This paper gives an
overview of  current  issues  and  recent  research  on  image
captioning,  with  a  special  emphasis  on  models  employing
deep  encoder-decoder  architectures.  We  discuss  the
advantages  and  disadvantages  of  different  approaches,
along  with  reviewing  some  of  the  most  commonly  used
datasets and evaluation metrics. We point out to some open
questions and conclude with directions for future research.
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I.     INTRODUCTION

Recent  success  of  deep  learning  methods  in
perceptual tasks, such as image classification [36, 65, 62]
and  object  detection  [61,  21,  59]   have  encouraged
researchers  to  tackle  some of  the  more demanding
problems for which recognition is just a step towards a
more  complex  reasoning  about  our  visual  world  [35].
Image captioning1, as a task of automatically describing
an image with one or more natural  language sentences,
although relatively novel [26],  has already gained a lot of
attention  in  the  research  community,  proving  to have
many  useful  applications.  Massive  amounts  of
unstructured and semi-structured data,  large portions of
which  come  in  the  form  of  images  and  videos,  are
available,  practically  everywhere,  today.  In  order  to
leverage their value, an efficient access is required. But
retrieval of such data becomes even more challenging if
it’s  not  accompanied  by  any  additional  information
explaining its content, something that has often been the
case because of the speed at which it is being generated.
It  would  be  quite  impractical,  if  not  impossible,  to
manually annotate all those large collections, even if the
cost of such endeavor wouldn’t be an issue.  Therefore,
other  solutions  should  be  found.  But  automatically
summarizing  content  within  an  image  or  other  media
does  not  limit  its  usefulness  only  to  content-based
retrieval.  Connecting  media  and  natural  language  help
sell  products  or  can  serve  as  an  aid  for  the  visually
impaired  in  performing  daily  tasks,  can  be  used  for
question  answering,  or  even  in  robots  navigation.
Benefits  of  systems  capable  of  generating  media
descriptions  are  certainly  not questionable.  But
something  that  seemed  so  easy  when  being  done by a
human,  turned  out  to  be  extremely  difficult  for

1 Captions or descriptions.  In  [8] authors make a clear distinction
between captions and descriptions. According to them,  captions provide
context  while  descriptions  verbalize  the  literal  content  of  an  image.
Since other authors mentioned in this paper don’t differentiate between
these  two  terms,  we  follow  their  approach  and  use  them
interchangeably.

computers.  

As  a  problem  that  integrates  vision  and  language
understanding,  its main challenges arise from the need of
translating  between  two  different,  but  usually  paired,
modalities [33]. It was shown [19] that just a fraction of a
second is sufficient for a human to capture the meaning
of the scene in order to be able to describe it accurately.
This includes not only to discern most salient objects and
their  attributes  but  also  reasoning  about  intricate
relationships  and interactions between them [35].  Even
more  so,  people  describing  an  image  usually  rely  on
common  sense  knowledge  for  adding  context,  or  are
capable  of  using  imagination  for  making  descriptions
vivid  and  interesting.  Something  that  still  poses  a
problem for computers.

Some of the earliest attempts at connecting vision and
language  date  back  to  the  1970s  [73].  More  recently,
some  researchers  have  used  images  for  word  sense
disambiguation  [6],  while  others  were  focused  on
annotating images with individual words [5, 71]. But it
wasn't  until just recently that researchers have started to
address  the  problem of  generating  full  sentence  image
descriptions. Sentences are richer than lists of words [18]
so several presumptions should have been met to make
more substantial progress in image captioning. Advances
in computer hardware and the ability to leverage GPUs
for  acceleration of  parallel calculations,  combined with
the availability of new datasets with millions of labeled
examples [60],  enabled the training of advanced models
based  on deep  neural  networks  [36,  79],  which
particularly favored the development of Computer Vision,
as  well  as  Natural  Language  Processing.  Through  the
interaction of these two fields, novel vision-to-language
(V2L) tasks have emerged, such as video description [76]
and  visual  question  answering  [47],  along  with  image
captioning [33, 34, 17, 49, 12, 13, 30, 69, 74, 46, 78, 2].

The rest  of  the paper  is  organized as  follows:  next
section  begins  with  a  systematization  of  different
approaches  to  image  captioning,  followed  by  some
background  information  on  neural  networks  currently
employed for this task. Section ends with an overview of
related  work  grouped  on  the  basis  of  the  reviewed
systems architectures. Third section presents some of the
currently most important datasets, along with discussing
different ways of collecting them. Section four points out
to  problems  arising  when  evaluating  generative
approaches, while section five discusses some other open
problems.  We  conclude  with  directions  for  future
research.

II.     MODELS

In general, image captioning models can be divided
into  two  broad  categories:  (1)  generative  models  that
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generate  novel  captions  and  (2)  retrieval-based  models
that rank a set of existing captions. 

Early  generative  approaches relied  on  the  use  of
predefined templates, which followed some specific rule
of grammar and were filled in based on the results of the
detection of scene elements [37, 52, 75].  However,  the
advantage of such bottom-up approaches [78] in terms of
the  ability  in  capturing  some  subtle  details,  was  not
enough to keep them in the  focus  of  research interest.
Generated sentences were too simple, lacking the fluency
of the human-written ones. Moreover, such systems were
heavily hand-designed, which constrained their flexibility
[69]. 

In order to overcome aforementioned problems, along
with  additional  difficulties  in  evaluating  such  systems
(see  section  IV.), authors  in  [26]  suggested  to  frame
image description as a  ranking task.  In  this approach,
images and sentences are embedded into the same vector
space so that  their similarity can be directly compared.
For  a  given  test  image,  a  set  of  semantically  similar
images, along with their descriptions, is retrieved from a
pool of existing ones. Of these existing ones, either the
most  compatible is  then  directly transferred  to  the  test
image  [26,  63,  18]  or  a  new  one,  obtained  by  re-
composing  sentence  fragments  [44,  38].  More  recent
approaches use neural networks to co-embed images and
sentences [63] or image regions and sentence segments
[31] into the same multimodal space. 

An  advantage  of  ranking-based  approaches  lies  in
their  ability  to  retrieve  images  based  on  a  description
query,  or  to  retrieve  descriptions  based  on  an  image
query.  Although  avoiding  some  of  the  problems  that
plagued  generative  approaches,  as  well  as  always
returning well-formed sentences, they lack the ability to
generate novel sentences or to describe compositionally
novel images [48], i.e. those containing objects that were
observed  during  training but  appear  in  different
combinations on the test image. Moreover, they require
large  amounts  of  human-written  training  data,  making
them hard to scale [69].

Today's  state-of-the-art  models  are  generative  and
neural networks based, more specifically, they employ
an  encoder-decoder  architecture  by  combining  a
Convolutional Neural Network with a Recurrent Neural
Network.  As  top-down  approaches  [78],  they  directly
map from images to sentences, making such systems end-
to-end trainable. 

Some background information regarding deep neural
networks will be given in the upcoming sections, and will
be  subsequently  followed  by  an  overview  of  recent
research. A more detailed survey of some of the earlier
approaches can be found in [8].

A.   Background

Convolutional Neural Network (CNN). As a type of
feedforward  neural  network, introduced  in  1990s  [40,
41],  CNN  is  adapted  to  work  with  input  data  with  a
strong local structure, such as 2D images. Typical CNN
architecture  consists  of  multiple  convolutional  and
pooling layers,  alternating several  times,  followed by a
few fully-connected layers and a soft-max layer (Figure
1).  Unlike  the  fully-connected  layers,  in  which  each
neuron is connected to all neurons from a previous layer,
the convolutional layer neurons receive input only from

those in their receptive field. This forces the extraction of
local   features   and   reduces   the   number   of    learned
parameters. Going  from low-level  features  extracted  at
the  first  layer  and  combining  them into  higher-level
features  at  subsequent  layers,  a  fixed  vector
representation of the most salient aspects of the image for
a given task, regardless of the exact location, is obtained.
This  resembles  the  functioning  of  the  mammals  visual
cortex [27]. 

Neurons  in  a  convolutional   layer  are  organized  in
feature maps. All neurons in a feataure map perform the
same operation at different parts of the image and share
same weights. Instead by matrix multiplication, weights
are calculated by convolving a convolutional layer with a
set of local filters, hence the name.

Convolutional layers are  followed  by a pooling layer
that  performs  local  averaging  and  subsampling.  This
reduces  the  dimensionality  of  the  output  and  helps
obtaining invariance to translation or distortion. 

Since 2012. CNNs achieve superior results on large-
scale object recognition tasks [36, 79, 62, 65, 24].

Recurrent  Neural  Network  (RNN).  Recurrent
Neural Network [15] is a neural network with feedback,
designed  to  model  sequences  of  data,  such  as  words
(sequences  of  characters)   or  sentences  (sequences  of
words). RNN  maintains  an  internal  hidden  state  that
stores  context  information,  i.e.   information  computed
from  past  inputs.  In  its  simplest  formulation,  given  a
sequence  of  inputs  ,  RNN  computes  a
sequence  of  outputs   by  applying  the
recurrence formula at every time step [13]:

(1)

where   is  internal  hidden  state  at  time step  t,   is  a
nonlinear  activation  function,   is  hidden  state  at
previous time step. Activation function may be a logistic
sigmoid function   or  hyperbolic  tangent   applied
elementwise such that

(2)

where    and   are learned weight matrices,  is 
bias. Same parameters are  shared  across  all time  steps. 
Output  at time step t is calculated as: 

. (3)

By  maintaining  an  internal  hidden  state  h, as  a
function of all the inputs from previous time steps, RNN
can easily learn short-term dependencies. But for longer
sequences RNNs become difficult to train [7, 55] due to
the exploding and the vanishing gradient problems caused
by RNNs iterative  nature  [29].  The exploding gradient

Figure  1.  Architecture  of  AlexNet [36], a  deep convolutional  neural
network  that  won the  ImageNet ILSVRC challenge [60]  in  2012. It
consists  of  eight  layers,  five  convolutional  layers  followed by three
fully connected layers.



problem   can   be  addressed  by  a  technique  known  as
gradient clipping [55]. However, the vanishing gradient
problem is more challenging [29]. 

Long  Short  Term-Memory  (LSTM).  Long  Short
Term-Memory architecture was developed by [25] and, in
a somewhat modified version [22], became the standard
way of dealing with the vanishing gradient problem [29].
Mathematically,  the  LSTM  architecture  is  defined  as
[23]: 

(4)

(5)

(6)

(7)

(8)

(9)

where    is  the input vector at time step t,  W are weight
matrices, z is  input  modulation  gate,  i,  f,  o are  input,
forget and output gates, c is memory cell, p are peephole
weight vectors and b are biases. Functions , g and 
are non-linear activation functions applied element-wise,

 denotes element-wise multiplication. 

Hidden state  in the LSTM consists of two states:  a
"fast" state h and a "slow" state c that helps alleviate the
vanishing gradients problem [29]. Flow of information in
a LSTM memory cell c is controlled by gates which can
open  or  close,  depending  on  their  weights,  so  that
information can be stored in, written to or read from a
cell (Figure 2). An addition  instead of multiplication at
the memory cell is a key to preserving constant error flow
when it must be propagated at depth.

Encoder-decoder  architecture.  Inspired  by  its
success in Neural Machine Translation (NMT) [64] most
of  the  current  state-of-the-art  models  for  image
captioning employ the  encoder-decoder  architecture.  In
this architecture an encoder is used to map the input, i.e. a
sentence in a source language, into its real-valued fixed-
dimensional  vector  representation.  A  decoder  then
generates output,  i.e.  a sentence in the target  language,
conditioned  on  the  representation  produced  by  the

encoder. Main advantage of such a system is that it can be
trained  end-to-end,  meaning  that  the  parameters  of the
whole network are learned together, thereby avoiding the
problem of aligning several independent components.

Perceived as a task of translating one modality, i.e. a
picture,  to  another  modality,  i.e.  its  description,  the
encode-decoder  architecture  was  also  successfully
adopted in vision-to-language problems (Figure 3), such
as image captioning [69, 13, 74], video description [76]
or visual question answering [47].

For the task of image captioning, a CNN is employed
on the  encoder  side,  which  acts  as  a  feature  extractor.
CNN  is  usually  pre-trained  on  a  large  dataset  for  a
classification  task  [60].  A  feature  map  from  a
convolutional  layer  or the vector  representation from a
fully-connected  layer  is  then  used  for  image
representation. 

On the decoder side,  a  RNN, or one of its  variants
such as LSTM or GRU [10], is employed for language
modeling. A RNN is trained to predict the next word  
conditioned  on  all  the  previously  predicted  words

 and the context vector c produced by the
encoder [3]:

(10)

where g is a nonlinear function that outputs probability of
,  is the hidden state of the RNN.

Main  advantage  of  using  neural  language  models,
instead of e.g. n-gram based models, is in reducing the
curse  of  dimensionality  problem  through  the  use  of
distributed  word  representations  [33].   Words  are
represented as real-valued fixed-dimensional vectors and
projected  into  low  dimensional  space  so  that  similar
words  are  clustered  together.  Instead  of  random
initializing their  weights,  pre-trained  word  vectors  [50,
56] can be used.

Attention  mechanism.  Some  limitations  of  the
general  encoder-decoder framework have motivated the
development  of  different  extensions  among which,  the
addition of the attention mechanism has emerged as the
most important.

It was demonstrated in [3] that the fixed-length vector

Figure 2. Comparison of the Simple Recurrent Network (SRN) unit (left) and a Long Short-Term Memory block (right) [23]. (Note: hidden state h 
here is denoted as y.)



representation produced by the encoder is responsible  for
the  degradation  of  the  performance  occurring  as  the
length of  input  increases.  Regardless  of  the size of  the
input, in the general encoder-decoder framework all the
information is  compressed into a  context  vector  c of  a
predefined size. Instead, authors proposed to encode the
input  into  a  set  of  context  vectors  
from which a subset is chosen so to adaptively attend to
the  most  important  parts  of  the  input  while  generating
next word of the output. 

Attention mechanism is widely adopted for the task of
image  captioning  and  different  variants  are  being
developed, such as spatial attention, semantic attention or
adaptive attention, to name just a few.

B.  Related work

Encoder-decoder  framework.  Building  on
promising  results  that  deep  learning  methods  already
demonstrated on the task of learning representations from
multiple  modalities,  in  [33]  authors  proposed  a
multimodal  neural  language  model  that  can  be
conditioned on high-level image features learned from a
deep convolutional neural network (CNN). In this model,
image  features  extracted  from  the  top  fully  connected
layer of a CNN, words represented as real-valued feature
vectors and all model parameters are learned together by
jointly training a  language  model  with a  convolutional
network. Authors introduced two multimodal log-bilinear
model (MLBL) based methods that differ by the way the
outputs  of  the  CNN are  used.  In  modality-biased  log-
bilinear  model  (MLBL-B)  images are input  as  additive
bias.  The  more  powerful  factored  3-way  log-bilinear
model (MLBL-F) uses gating.  Although proposed MLBL
models  can  generate  descriptions  by directly  sampling
from a language model, as opposed to earlier approaches
that relied on the use of templates [37, 52, 75]  or other
constraints, it is mostly focused on retrieval. 

To  overcome  the  inability  of  retrieval-based
approaches  to  produce  novel  captions  or  to  describe
images with previously unseen combinations of objects,
in [49] and in [48], a subsequent version of their work,
authors propose a multimodal Recurrent Neural Network
(m-RNN) framework that directly models the probability
distribution  of  a  word  given  previous  words  and  an
image. The model consists of two sub-networks, a CNN
and  a  RNN,  modeled  through  five  layers:  two  word
embedding  layers  for  learning  dense  word

representations,  a   recurrent  layer   in   which   semantic
temporal  context  is  stored,  a  multimodal  layer  for
connecting the language  model  part  with  a  deep CNN
which  in  turn  generates  image  representations,  and
ending  with  a  soft  max  layer  to  output  probabilities.
Storing context in the recurrent layer allows the use of
arbitrary context length,   as opposed in [33] where the
model  used  fixed-length  context.  The  decision  not  to
store  image  information  in  a  recurrent  layer  but  to
directly input  it  through a  multimodal  layer,  combined
with  the  use  of  two-layer  word  embedding,  led  to
substantial improvement in performance.

In  [34]  authors  go  further  and  build  on  [33]  by
replacing  log-bilinear  model,  a  type  of  a  feedforward
network, with the recurrent neural network. The proposed
encoder-decoder  system  unifies  joint  image-text
embedding models (encoder part) with the new  structure-
content  multimodal  neural  language  model  (SC-NLM)
(decoder part). SC-NLM extracts content from sentence
structure conditioned on the representation produced by
the LSTM encoder. This way, the structure variables that
correspond  to  part-of-speech  for  words  found  in  the
description, and serve as a soft  template that  steers the
process  in  order  to  generate  grammatically  correct
sentences, are obtained. An advantage of the SC-NLM is
that it  can be trained only on text, without the need of
images, allowing additional text corpora to be provided
for the purpose of improving the quality of the language
model. 

Previous approaches use image features extracted at
the  global  level  (full-frame  image  features)  but  [31]
showed  an  alternative  that  takes  advantage  of  object
detections results from a Region CNN (RCNN) detector.
Similarly,  in an approach that  won the Microsoft  2015
COCO Caption Challenge2, [17] uses weakly-supervised
learning to create detectors for visual words, i.e. nouns,
verbs and adjectives, found in image regions, which are
then  mapped  to  words  that  are  likely  to  appear  in
captions. With the goal of covering each of the detected
words exactly once, a maximum entropy language model
(ME LM), which generates candidate captions from a set
of training descriptions  conditioned on visually detected
words,  is  employed.  The final  step in  the process  uses
Minimum  Error  Rate  Training  (MERT)  to  re-rank
candidate  sentences  by  utilizing  an  additional  Deep
Multimodal  Similarity  Model  (DMSM)  based  feature.

2 http://cocodataset.org/#captions-challenge2015

Figure  3.  Encoder-decoder  architectures  for  three  vision  problems  involving  recognition  and  description  (activity  recognition,  image  caption
generation and video description) [13]. Proposed LRCNs combine a CNN with a stack of LSTMs to process (possibly) variable-length inputs into
variable-length predictions.



For  each  modality,  DMSM  learns  separate  neural
networks, which then project image and text fragments to
a common vector space and score their similarity.

In  [17],  image  region  features  are  utilized  for  the
purpose of generating whole image captions. In contrast,
the goal in [30] is to generate image region descriptions
(Figure 4) by first aligning contiguous segments of image
descriptions with image regions  that  they describe  and
then  using  this  inferred  alignments  to  generate  novel
descriptions.  Following  [31],  objects  in  images  are
detected with a RCNN. Word representations are enriched
with  a  variably  sized  context  around  each  word  and
computed  with  a  Bidirectional  RNN  (BRNN)  [22].
Instead  of  random  initializing  weights  of  word
embedding  matrices,  as  in  [48],  BRNN  exploits  the
benefits  of  pre-computed  word  vectors.   Words  and
images  are  mapped  into  a  common  multimodal
embedding so that semantically similar concepts occupy
nearby regions of the space.  After grounding fragments
of most compatible sentence in image regions, a second
model,  a  Multimodal  Recurrent  Neural  Network,  uses
these learned correspondences as the training data in the
generative process that is additionally conditioned on the
image input via bias interaction on the first time step. 

Experiments showed that the model is able to detect
visual-semantic correspondence for small or rare objects
that  would  be  missed  by full  frame  models.  Proposed
model outperformed full-frame and ranking baselines.

A limitation of  the  architecture  proposed  in  [30]  is
that  it  uses  two  separate  models.  In  [69]  authors
introduce an end-to-end trainable Neural Image Caption
(NIC) system,  similar in approach to [33] or [48] but in
contrast, it uses a LSTM variant of a RNN. Additionally,
images are input only once, at the first time step, to give
LSTM  an overview of the image content, and directly,
not as additive bias, which allows RNN not to lose sight
of the objects already mentioned in captions. Experiments
showed that inputting image at every time step leads to a
system more prone to overfitting. 

A  similar  end-to-end  system,  combining  a  CNN
encoder and a LSTM decoder, is introduced in [13] but
with  a  difference  that  in  the  proposed  Long-Term
Recurrent  Convolutional  Network  (LRCN)  (Figure  3)
image features are input at every time step. Additionally,
factored  representation  is  explored  by  concatenating

image features with the hidden state output of previous
LSTM of the stack.  Authors investigated the effect  of
different architectures and found that using LSTM instead
of simple RNN combined with the more powerful CNN
were  the  most  important  factors  contributing  to  better
performance.  Stacking  additional  LSTM  layers  didn't
bring expected improvements.

State-of-the-art  results  in  image  captioning  that
achieved image-conditioned language models, motivated
authors  in  [12]  to  directly  compare  two  dominant
approaches:  one  that  uses  maximum-entropy  language
model (ME LM) to generate sentences based on a set of
discrete detections, as proposed in [17], and a second one
that  uses  a  RNN  LM  conditioned  on  the  continuous
valued  CNN  activations,  referred  to  as  Multimodal
Recurrent Neural Network (MRNN) [30, 48, 13].  Study
showed  that  MRNN  achieve  better  results  when
measured by an automatic metric (BLUE [54]) but tend to
reproduce previously seen captions from the training set,
while  ME  LM  generate  most  novel  captions.  Authors
additionally performed human evaluations which showed
disparity between human and automatic scores, a known
problem when  evaluating  automatic  generated  captions
[26]  (more  on  this  problem  in  section  IV.).  The  best
results in terms of  human judgments were obtained by
ME LM that leverages scores from a DMSM [17]. 

Spatial attention.  The first one to employ attention
mechanism on the task of image captioning was the work
of  [74].  Inspired  by  similar  approaches  that  already
demonstrated  a  substantial  contribution  to  a  better
performance on tasks  such as image classification [53]
and multiple object recognition [4], or in the context of
machine translation [3] where a soft-attention mechanism
was proposed, authors in [74] introduce two variants of
extensions  to  the  simple  encoder-decoder  model  for
image captioning:  a  soft-attention mechanism, trainable
by  back-propagation  [39],  and  a  hard-attention
mechanism, trainable by maximizing a variational lower
bound by REINFORCE learning rule [72] (Figure 5).  

As authors point  out, one drawback of using image
representations from the top fully connected layer  of  a
CNN is in losing some subtle details which in turn could
help in the generation of more expressive and human-like
captions.   Instead,  they  extract  image  features  from  a
lower convolutional layer as a set of annotation vectors
that  summarize  a  pre-defined  spatial  location  of  the
image.   Each  annotation  vector  is  assigned  a  positive
weight  that  is  computed  by  an  attention  model  (a
multilayer perceptron). These weights can be interpreted
as probabilities of being attended by the decoder when
generating  next  word  (hard,  stochastic  attention
mechanism)  or  as  the  relative  importance  to  give  to  a
location  (soft, deterministic attention mechanism) [74].
After  obtaining  attention  weights,  attention  mechanism
computes the context vector as a dynamic representation
of the relevant part of the image input at individual time
step.  Experiments  showed  that  both  models  achieve
comparable state-of-the-art results by an approach that is
more flexible than [30] in that the model can attend even
to “non-object” salient regions. Additional benefit is the
ability to visualize the attention weights associated with
the word emitted at the same time step which enables us
to gain  an intuition how the attention is  shifting when
generating  individual  words  (Figure  5)  and  why some
errors were made. 

Figure 4.  Image region descriptions as generated by a region-level
multimodal RNN [30].



Semantic   attention.   Different   from   [74],   where
attention is modeled spatially so that pre-trained features
and attention weights correspond to particular parts of the
image, in [78]  authors propose a novel semantic attention
model  on  the  notion  that  only  the  most  semantically
important  parts  are  mentioned by people  describing an
image. Authors define semantic attention as the “ability to
provide a detailed, coherent description of semantically
important objects that are needed exactly when they are
needed”.  By  combining  different  sources  of  visual
information  through  a  feedback  process,  semantic
attention model is able to attend to fine details all while
having an end-to-end trainable system. All visual features
are fed to RNN. Top-down features,  extracted from the
last convolutional layer of a CNN, and input only once to
inform the RNN of the image content, serve as a guide
where and when to attend. A set of bottom-up attributes
are  detected  as  candidates  for  attention.   Those  with
highest  attention  scores  are  then  used  by the  attention
mechanism  which  learns  to  attend  to  semantically
important  concepts.  Since  irrelevant  attributes  may
redirect attention to wrong concepts, attribute prediction
plays a crucial role.

Similar in approach is [2] where authors combine top-
down  and  bottom-up  attention  processing  to  calculate
attention on the object-level. Instead of treating detected
objects  as  bag-of-words  that  don't  retain  spatial
information,  they  propose  a  different,  feature-based
approach.   Bottom-up  attention  mechanism,  based  on
Faster  R-CNN  [59],  proposes  a  set  of  salient  image
regions  represented  by  feature  vectors  indicating  that
some concepts belong to the same object. Combined with
the more traditional top-down approach, this allows the
structure of the scene to be better uncovered.

Adaptive attention.  Spatial attention models have a
limitation in that they cannot selectively decide whether
they need to attend to the image. In [46] authors argue
that attending to the image at every time step becomes
unnecessary for  words  that  don't  have  a  corresponding
visual signal such as “a “, “for” etc. They introduce an
adaptive attention encode-decoder framework that, while
generating  next  word  in  the  caption,  automatically
decides whether to attend to the image or to rely solely on
the language model. An LSTM extension, called sentinel
gate,  produces  an  additional  visual  sentinel  vector
extracted from linguistic information stored in decoder's
memory which is then used when the model decides not
to attend to the image. To be able to determine how much
information should be drawn from the  image and how
much from what's already stored in the memory, the new
adaptive context vector is modeled as a combination of
the context vector of the spatial attention model and the
visual sentinel vector.

III.     DATA

The development of a research field greatly benefits
from the availability of large datasets, which in addition
to its size, should also be appropriate in terms of quality
and suitability for a particular task. Large-scale datasets,
such  as  ImageNet  [60]  with  more  than  14  millions  of
annotated  images,  organized  into  22k  categories
according  to  WordNet  [51]  hierarchies,  have  already
helped  move the  boundaries  of  some Computer  Vision
subfields and similar trends are being observed in dealing
with other vision & language problems as well.

Since most models are supervised, datasets for image
captioning consists of image-caption pairs. Unlike some
earlier approaches [37, 75], in [17] authors showed the
benefits of directly using captions in training.

A.  Collecting datasets

Images  are  collected  primarily  from  photo-sharing
services, mostly Flickr3.  For this purpose, some authors
retrieve  them by issuing  specific  queries  [43,  58,  77],
while  other  augment  existing  datasets  [58,  57,  35].
However,  obtaining  appropriate  image  descriptions
turned out to be much more challenging. 

As  [26]  point  out,  captions  provided  by  users  of
photo-sharing websites are not suitable for the training of
automatic image  captioning  systems.  Such  captions
usually provide  context,  i.e. additional  information that
cannot  be  obtained  by the  image  alone.  Describing an
image with a sentence like “a woman standing in front of
a tall building” would not be perceived by a human as
providing  valuable  information.  When  people  describe
something to other people, they usually avoid mentioning
the obvious [26].  But for automatic systems it is  much
more appropriate than just saying “my sister yesterday in
Paris”.  Even if  the algorithm could learn  to  recognize,
just by looking at enough photos of the Eiffel Tower, that
the depicted woman is actually in Paris, certainly it would
not  be  able  to  recognize,  just  by looking  at  the  same
picture, that she is someone’s sister or that the photo was
taken  “yesterday”.  And  this  is  something  that  people
would not be able to do either.  If  it  is not  obvious for
humans, how could it be for a machine? [58]  

Instead of using non-visual descriptions, [26] suggest
to focus on general conceptual descriptions, i.e. those that
refer to objects, attributes, events and other literal content
of the image. Such descriptions are collected on a large-
scale  through crowdsourcing services,  such  as  Amazon
Mechanical  Turk  (AMT)  [58,  26,  9]  which  involves
defining a task that  is  performed by untrained workers

3 https://www.flickr.com

Figure 5. An attention-based model is able to attend to the most salient parts of the input while generating next word of the output. Showed are
examples produced by a soft attention (top row) and a hard attention (bottom row) mechanism [74].



[8]. Due to the low cost and high speed, this became the
preferred way of collecting image descriptions at scale.
However,  given  the  lack  of  control  over  who  can
participate, which in turn can negatively affect the quality
of  the  collected  descriptions,  [58]  suggest  the  use  of
qualification tests.

B.  Datasets

UIUC PASCAL Sentences  [58] was one of the first
image-caption  datasets,  consisting  of  1,000  images
randomly selected from the PASCAL 2008-VOC dataset
[16]  and  associated  with  five  different  descriptions
collected via crowdsourcing. It was used by early image
captioning systems [18, 37, 52, 75], but due to its limited
domain, small size, and relatively simple captions it is not
used anymore.

Flickr 8k [26, 58] is a larger and more diverse dataset
consisting  of  8,092  images  collected  from  Flickr  and
focusing on people or animals performing some action.
Five  different  captions  per  image,  describing  depicted
entities and events, were collected via crowdsourcing. 

Flickr 30k [77] includes and extends previous Flickr
8k dataset. 31,783 images of everyday activities, events
and scenes are described by 158,915 captions obtained
via crowdsourcing. 

Microsoft  COCO Captions  [9]  datasets extend the
Microsoft  COCO  dataset  [43]  consisting  of  images  of
complex everyday scenes and common objects  in their
natural  context.  By  the  addition  of  human  generated
captions,  two  datasets  were  created.  MS  COCO  c5
contains five captions for every of the more than 300k
images  in  the  MS  COCO  dataset  and,  since  it  was
observed [68]  that some evaluation metrics benefit from
more reference captions,  an additional,  MS COCO c40
dataset was created by randomly choosing 5,000 images
and annotating them with 40 different captions.

Flickr30k Entities  [57] augments the 158k captions
from the Flickr 30k dataset with 244k coreference chains
and 275k bounding boxes, linking mentions of the same
entities  across  captions and grounding those entities  in
image regions. 

Visual Genome (VG) [35] is a novel, region captions
dataset  consisting  of  94k  images  taken  from  the
intersection of MS COCO and YFCC100M [66] datasets,
along with 43.5 crowdsourced annotations per image. VG
tries to overcome limitations of the previously described
datasets in emphasizing only the most prominent aspects
of the image. Since real-world scenes are complex, in VG
great  importance  is  assigned  to  attributes  and
relationships  among  objects  in  the  scene.  A  useful
consequence  is  that  each  image can  be  displayed  as  a
scene graph [28].

Flickr  30k  and  MS  COCO  Captions  are  widely
adopted as benchmark datasets  for image captioning by
most models employing deep neural networks. A survey
of some earlier datasets is provided in [20], along with
some quality criteria for evaluating and analyzing them. 

IV.     EVALUATION

Correctly  describing  an  image  requires:  (1)
summarizing  its  salient  content  in  terms  of  objects,
attributes, relations along with deducing what is novel or

interesting [17], (2) expressing this semantic content with
properly formed sentences [69] that are also appropriate
for the image they describe [26]. 

When such descriptions need to be evaluated, certain
problems arise. It is clear that by placing the emphasis on
one or the other aspect, the resulting sentences may vary
considerably  while  at  the  same  time  being  perfectly
correct.  Two captions  can  quite  differently express  the
same content or in contrary, they can share most of the
words and convey completely different meaning, making
the  evaluation  of  novel  sentences  generated  by  image
captioning systems challenging, something about which
many authors agree [68, 1].

Evaluation of novel captions [12, 13, 17, 30, 33, 34,
46, 48, 70, 74, 78] can be performed by human subjects,
either by experts [26] or by untrained workers through
crowdsourcing platforms [17, 13, 45]. However, human-
based  evaluations  are  associated  with  additional  costs,
they are slow and difficult to reproduce [26, 32]. A better
alternative would be the use of automatic metrics,  which,
in  turn,  are  fast,  accurate  and  inexpensive  [1].
Additionally,  they  should  satisfy  two  criteria  [45]:  (1)
captions  that  are  considered  good  by  humans  should
achieve high scores, (2) captions that achieve high scores
should be considered good by humans. A goal that  has
proved to be difficult to achieve. 

Image  captioning  sometimes  is  compared  [14]  to
translating  an  image  to  its  description  [37,  69]  or  as
summarizing  the  content  of  the  image  [75],  which
motivated  the  adoption  of  automatic  metrics  originally
developed for  the evaluation of  models build for  other
tasks  [54,  11,  42].  All  these  metrics  output  a  score
indicating  a  similarity  between  the  candidate  sentence
and reference sentences.

BLEU (BiLingual Evaluation Understudy) [54] is  a
popular metric for machine translation evaluation and one
of the first metrics used to evaluate image descriptions. It
computes the geometric mean of n-gram (1 to 4-gram)
precision scores multiplied by a brevity penalty in order
to avoid overly short sentences. 

METEOR (Metric for Evaluation of Translation with
Explicit  Ordering)  [11]  is  another  machine  translation
metric.  It  relies on the use of  stemmers,  WordNet [51]
synonyms  and  paraphrase  tables  to  identify  matches
between candidate sentence and reference sentences. For
the  aligned  sentence  pair,  an  F-measure  is  calculated
along with a  fragmentation penalty which accounts for
gaps and differences in word order.

ROUGE (Recall-Oriented  Understudy  for  Gisting
Evaluation)  [42]  is  a  package  of  measures  originally
developed for the evaluation of text summaries. For  the
purpose  of  image  captioning,  a  variant  ROUGEL  is
usually used,  which  computes  F-measure  based  on the
Longest Common Subsequence (LCS) i.e. a set of words
shared by two sentences which occur in the same order,
without requiring consecutive matches. 

CIDEr  (Consensus-based  Image  Description
Evaluation) [68] is a metric specifically designed for the
evaluation  of  automatic  generated  image  captions.  It
measures similarity between the candidate sentence and a
set  of  human-written  sentences  by  performing  a  Term
Frequency  Inverse  Document  Frequency  (TF-IDF)
weighting for each n-gram. A preferred variant is CIDEr-
D,  since  it  is  more  robust  to  gaming,  a  situation  that



occurs when a caption scored high by an automatic metric
receives low scores when judged by humans. 

SPICE (Semantic  Propositional  Image  Caption
Evaluation)  [1]  is  another  metric  designed  for  image
caption evaluation. It  measures the quality of generated
captions  by  computing  an  F-measure  based  on  the
semantic propositional content of candidate and reference
sentences represented as scene graphs [28]. An advantage
of this metric is that it can detect models that understand
colors or those that can count. 

The  aforementioned  evaluation  metrics  represent  a
standard  set  of  metrics  usually  reported  in  papers,
although SPICE to a  lesser  extent  since it  is  relatively
novel. Their popularity is partly the result of the fact that
they are available through the Microsoft COCO caption
evaluation  server  [9],  which  was  built  for  the  first
Microsoft  COCO 2015 Captioning Challenge and is still
available, enabling a consistent  comparison of different
models using an uniform implementation of the specified
metrics.

However,  it  was  shown  in  [14]  and  [26]  that
automatic  metrics  don’t  always  correlate  with  human
judgments,  something  that  was  particularly  evident
during  Microsoft  COCO  2015  Captioning  Challenge.
Some  models  outperformed  human  upper  bound
according  to  automatic  metrics,  but  human  judges
demonstrated preference for human-written captions [70].
As  stated  in  [68]  “humans  don’t  always  like  what  is
human-like”.

The authors in [32] report some additional problems
with automatic metrics. They found that replacing some
words  with  their  synonyms  causes  the  scores  of  all
metrics to decrease. Similarly, word ordering matters for
BLEU,  ROUGE and CIDEr,  but  SPICE scores  remain
unaffected by changes in word order.

Since  there  is  no best  metric,  some authors  [1,  32]
advise  the  use  of  an  ensemble  of  metrics  capturing
various  dimensions,  such  as  grammaticality,  saliency,
correctness/truthfulness.  Others  propose  novel  metrics.
One  potentially interesting  is  SPIDEr  [45]  as  a  linear
combination of CIDEr and SPICE, capturing the best of
both  worlds.  The  SPICE  score  ensures  that  captions
capture semantic content of the image, while CIDEr score
ensures their syntactic correctness.

Evaluation of ranking based systems [26, 31, 63] is
performed  directly  on  existing,  human-written  captions
by evaluating how well the system ranks the caption of a
test image over the captions of all other test images [26].
Recall@k and median rank are usual metrics employed in
this  setting.  Some  generative  models  can  also  be
optimized for ranking [13, 30, 33, 34, 48].

V.     OPEN PROBLEMS

A  modestly  set  goal  in  [45]  to  generate  image
descriptions  that  would  be  judged  by  humans  as  “not
bad”, suggests  that  even the state-of-the-art  models are
still  far  from  being  perfect.  Apart  from  previously
mentioned issues with the evaluation process,  there are
other open problems that still need to be addressed in the
future  research.  Some  of  them  are  inherent  to  the
analyzed models,  others are caused by external  factors,
such  as  datasets  used.  Authors  in  [33]  report  problems
detecting colors or clothing.  Similarly,  models  proposed

in [74] were not able to recognize texture or fine-grained
categories. Moreover, authors  reported  problems  with
counting.   Those  and   other   similar   errors   motivated
authors in [67] to conduct a detailed error analysis. They
found that 80% of the analyzed captions contained some
errors  (on  average  1.56)  and  that  26%  of  generated
captions were unrelated to the image. 

The  authors  in  [69]  investigated  problems  from  a
different  perspective.  They  studied  the  effect  of
transferring a model to a new dataset, which resulted in
the decrease of BLEU scores. In [12] authors found their
models  reproducing  captions  from  the  training  set,
suggesting lack of diversity in the training data. A similar
problem  was  also  observed  in  [69]  where  the  system
reproduced training captions 80% of the time. 

VI.     CONCLUSION

This paper presents an overview of recent advances in
image  captioning  research,  with  a  special  focus  on
models  employing  deep  encoder-decoder  architectures.
Main advantage of such architectures is in that they are
trainable  end-to-end,  mapping  directly  from  images  to
sentences. An important extension of the basic encoder-
decoder  framework  is  the  attention  mechanism,  which
enables  to focus on the most  salient  parts  of  the input
while  generating  the  next  word  of  the  output.  In  this
paper  spatial,  semantic  and  adaptive  attention
mechanisms  are  described.  Large  vision  &  language
datasets  have  also  contributed  significantly  to  the
development of the field. Additional features provided by
novel  datasets,  such  as  coreference  chains  or  image
region  captions,  will  certainly  stimulate  even  faster
advances in the periods to come. One important area that
still  remains  an  open  problem  is  the  evaluation  of
generated  captions.  While  new  evaluation  metrics  are
being  proposed,  their  adoption  will  depend  on  their
availability through evaluation servers.

Most of the literature deals with models that generate
image descriptions in the English language, emphasized
by the fact that the descriptions used in training and for
benchmarking  are  also  in  the  English  language.  Our
future  research  will  be  focused  on  developing  models
adapted to the generation of captions in other languages,
primarily  in  Croatian,  while  simultaneously  addressing
some  of  the  aforementioned  issues.  One  direction  that
will  be  explored  is  the  use  of  reinforcement  learning
techniques as an extension to the general encoder-decoder
model. Such systems should rely less on paired training
data.
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