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Abstract—In natural language processing text has to be
transformed into machine-readable representation before any
processing on it can be done. The quality of any further NLP
tasks greatly depends on the quality of those representations.
This work gives an overview of text representation models that
use neural networks. For this overview, almost 40 models in
research articles from the last decade are analyzed. The models
described in those articles are categorized by the representation
level as subword, word, and larger parts of text (e.g., phrase,
sentence) representations, and by the architecture of neural net-
works as shallow, convolutional, recurrent, and recursive models
(with additional attention and multimodal models). Different
representation models are suitable for different NLP tasks. In
preliminary work, we tested shallow models on an analogy task
and for measuring semantic similarity.
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I. INTRODUCTION

Text is an important source of human knowledge and a
medium through which humans communicate. For artificial
intelligence in general, it is very useful to give computers the
ability to understand language.

To do so, text first has to be transformed into text repre-
sentation (represented as vectors of numbers). It is desirable
that text representations are encoded in a vector space that
preserves information about semantics, syntax, knowledge,
and other information that could be useful for downstream
tasks (tasks that use text representation). Such a representation
would be closer to the human way of perceiving text. Text
representation is directly needed in tasks such as information
retrieval, question answering, textual entailment identification,
keyword extraction, text summarization, sentiment analysis,
machine translation, etc.

Generally, today there exist numerous approaches for solv-
ing various NLP tasks. Some early approaches performed text
processing by using a set of rules [1]. While later in the
1980s, there was a revolution in the field of NLP with the
introduction of machine learning algorithms and statistical ap-
proaches. Probabilistic language models (e.g., n-grams) assign
probabilities to sequences of words [2]. In the last decade,
the most successful approaches include representation learning
based on neural network models [3].

This overview is focused only on models based on neural
networks that produce vector representations in n-dimensional
space. Each vector in that space represents a text element

with the desired propriety that the vector is closer to all other
vectors that are similar to it. This similarity usually refers
to the semantic similarity. Except for the closeness based on
semantics, the vector space may be meaningfully structured
in many other ways, capturing syntax, knowledge, and other
information. Text elements for which representations can be
created are subwords, words, phrases, sentences, and docu-
ments. The process of representing text elements as vectors is
called embedding (e.g., word embedding).

The simplest representation would be if each word gets
its own number representation, but in such a representation
all words would be represented in one dimension. A one-
dimensional representation can not preserve useful information
about the words (such as semantic information and syntax).

One-dimensional problem is solved by one-hot encoding,
where every word gets its own dimension, and the length of
the representation vector is equal to the number of words
in the vocabulary. One-hot representation has for a word a
”0” for each element in the vector except for one element,
which is ”1”. In this representation, each word is equally
distanced from every other word, which still does not preserve
information about language and meaning, but at least this
representation does not preserve irrelevant information about
distances between words as the first method, which is one
dimensional. One more problem with one-hot encoding is that
the representation vectors are very long.

Early representation methods for texts (documents, para-
graphs, or sentences) used the bag-of-words approach, which
preserves only the information about which words are in
the text. Better methods use tf-idf (term frequency - inverse
document frequency), LSA (latent semantic analysis), and
similar models that hold more information as they preserve
some statistics about the words in the text [4].

One-hot and tf-idf based methods are sparse vector methods
(as the vector that represents a text has zeros for all the
words that are not in the text it represents). New methods,
which produce dense vectors, use techniques that generate
representations that preserve more information about the text.
Those techniques are more promising not only because they
can potentially preserve dense information, but because the
produced vectors are smaller as well (which makes training
downstream tasks easier).

As is mentioned in the book [5]: generally, a good rep-



resentation is one that makes a downstream learning task
easier. Representation learning is by its nature unsupervised
learning problem, which can be very useful with the amount
of unlabeled data we now have. Representation learning can be
used as a pretraining method where a neural network, which
would use that pretrained representation, could learn faster and
perform better on another task. Representations can be used
for transfer learning as well, where representation learned for
one task can be useful for other tasks.

Text representation is needed for a wide variety of tasks, and
neural models appear to generate high-quality representations.
Because of the nature of neural networks, when a model
has learned to perform well at a task, a byproduct is a
dense representation formed in the hidden layers of the neural
network.

The aim of this research is to identify what are the promising
directions in the research of neural text representations models.
To do so, we analyze almost 40 models from the last decade
published in research papers in prominent journals and NLP
conferences. Models are categorized by the representation
level and architecture of neural networks.

Amongst similar overviews that analyzed neural network
models for text representation are a survey on neural language
models [6] and a bachelor’s thesis that reviewed word em-
bedding models [7]. Authors in [6] covered neural network
language model methods, which do produce text representa-
tion. Authors in [7] covered word representation models (and
document similarity algorithms). Our overview reviews more
neural network architectures that are used, and all the text
representation levels.

The rest of the paper is organized as follows. Section
2 covers related work, Section 3 overviews representation
methods, Section 4 covers preliminary results, Section 5 shows
the possible future work, and Section 6 concludes the paper.

II. RELATED WORK

The model that popularised the usage of shallow neural
networks for word representations is Word2Vec [8, 9]. It uses
a fully connected neural network (FCNN) shallow architecture
that learns statistics about word contexts (Figure 1). It follows
the distributional hypothesis, which states that the words which
are similar in meaning occur in similar contexts [10]. In the
learned space, two word representations are closer together
for the two words that are more similar, and the relationships
between words are preserved as well (where king and man
are positioned in the same way as queen and woman, and the
positions of countries and their capitals preserve meaningful
information as is shown in Figure 2).

Convolutional neural networks (CNN) work successfully
with visual data, they are used less frequently for text rep-
resentation (architecture shown in Figure 3). One early work
[12] used CNNs to train word representations by learning to
predict if the word in the middle of the input window is related
to its context or not.

Words in a text are following some meaningful order.
Models like Word2Vec are not sensitive to word order, they

Fig. 1. Word2Vec (shallow) arhitecture [11].

Fig. 2. Country and capital vector representations [8].

are only interested if a word is in the context of another
word. Recurrent neural network (RNN) models create text
representations with recurrent units, which besides sending
signals forward, send signals back to themselves. By doing
so, recurrent layers can learn representations of sequences by
receiving input tokens one by one while the recurrent units
preserve previous states. Such models are sensitive to word
order. One example is Seq2Seq [14] that uses long short-term
memory (LSTM) layers, a type of RNN layer that solves some
of the RNN problems (most importantly vanishing gradient).

Recursive neural network (RvNN) models are sensitive
not only to word order but to the structure of a text as
well (example of recursive neural network predicting word
sentiment classes is shown in Figure 5). One of the more
successful RvNN models is RNTN (Recursive Neural Tensor
Network) [16]. RNTN learns text representations for sentiment
classification. Because of the nature of RvNN models, while
learning text representations with the help of parse trees
(which can be given to the model, learned by the model,
or generated by the model) model learns not only sentence
representations, but word representations, and phrase repre-
sentations for every node in a parse tree.

Inspired by how humans read and understand longer texts,
neural attention mechanism was created. When processing
longer texts, an RNN would not work very well because it



Fig. 3. Convolutional arhitecture [13].

Fig. 4. Recurrent architecture, and the unfolding in time [15].

focuses equally on every word in a text for every decision.
Neural networks with attention can focus on parts of a text
that are more important for a current task, and thus work better
with long texts. Currently, the most promising method that is
using the attention mechanism is BERT (Bidirectional Encoder
Representations from Transformers) [17]. BERT transformer
uses a bidirectional self-attention mechanism. While learning
text representation, it masks a percentage of input words and
tries to predict them.

Humans learn concepts not only by reading about them,
but we also have other sources of information as well (vision,
sound, previous knowledge, etc.). Some methods (as [18])
use images besides text to improve text representation. As
the model learns from multiple sources of information, and
the information is grounded to some additional knowledge
while learning, this kind of learning is called multimodal or
grounded learning.

III. OVERVIEW

A. Representation Levels

Text can be represented on multiple levels. Models can
learn representations for subwords, words, phrases, sentences,
paragraphs, or documents.

Table I categorises some of the neural network models into
subword, word, and sentence+ representation levels.

Subword elements include characters and character n-
grams. Downstream tasks in languages with rich morpholo-
gies perform better with subword representations, and out-of-
vocabulary words are easily represented [19].

Word representations are easier to implement, as generated
representations are ready for use, while subword representa-
tions have to be combined into word representations.

Sentence+ is a category for phrase, sentence, paragraph,
and document representations. While word representations

Fig. 5. Recursive neural network predicting word sentiment classes [16].

can be combined to form a sentence+ representation, neural
network models that are specialized for learning sentence+
representations learn better representation spaces.

TABLE I
CATEGORISATION OF NN MODELS BY REPRESENTATION LEVELS

Level Model
subword CharSCNN [20], CharWNN [21], CharCNN

[22], FastText [23], GPT-2 [24]
word [12], Word2Vec [8, 9], [25], Deps [26],

GloVe [27], [18], [28], ELMo [29], ConvRR
[30]

sentence+ [31], [32], RAE [33], MV-RNN [34], cim-
RNN and csmRNN [35], RNTN [16], [36],
Seq2Seq [14], Doc2Vec [37], [38], Skip-
Thoughts [39], RCNN [40], Tree-LSTM
[41], TBCNN [42], SPINN [43], RL-SPINN
[44], ST-Gumbel [45], [46], [47], [46],
GLoMo [48], BERT [17]

B. Neural Network Architectures

Neural network models that learn text representation most
frequently use shallow, convolutional, recurrent, recursive, or
a combination of mentioned architectures.

Table II categorizes some of the neural network models into
shallow, convolutional, recurrent, and recursive architectures.

Shallow architectures in this categorization mainly include
feed-forward neural networks that have one hidden layer. Such
models learn only a very shallow representation of text. They
perform well on simple tasks like measuring word similarity.

Convolutional architectures are well suited for learning
local patterns in text. Pooling layers learn to detect important
tokens or features for a specific task it is trained on [3].

Recurrent architectures are made for sequential data. Text
input can be treated like sequential data, reading input text
token by token while updating network states.

Recursive architectures read texts in a structured fashion
(parsing trees). Because of that, recursive models create high-
quality sentence representations and perform very good in
semantic and sentiment tasks [41].



TABLE II
CATEGORISATION OF NN MODELS BY ARCHITECTURE

Architecture Model
shallow Word2Vec [8, 9], Deps [26], GloVe [27],

Doc2Vec [37], FastText [23]
convolutional [12], CharSCNN [20], CharWNN [21],

[28], [22] (CharCNN), [49], ConvRR [30]
recurrent [38], Seq2Seq [14], Skip-Thoughts [39],

RCNN [40], [46], ELMo [29], [47], GLoMo
[48]

recursive [31], [32], RAE [33], MV-RNN [34], cim-
RNN and csmRNN [35], RNTN [16], [36],
Tree-LSTM [41], TBCNN [42], SPINN
[43], RL-SPINN [44], ST-Gumbel [45]

C. Shallow Models

In shallow models phrase, sentence, and document represen-
tations are made by combining shallow word representations,
which makes the resultant representations very simplistic (bag
of words). Shallow models learn a very shallow text represen-
tation and therefore are very fast to train, and can be used as
input for models that can create better representations.

Shallow models perform well only on simple tasks (e.g.,
word similarity). If a task is more complex (requires a deeper
understanding, e.g., question answering, summarization) than
shallow models are not the right choice.

Word2Vec [8, 9] popularised shallow word representation
using neural networks. Word2Vec has two models: continuous
bag-of-words (CBOW) and skip-gram. Both learn word repre-
sentations through unsupervised learning. The CBOW model
scans over the text with a context window around the target
word and it learns to predict the target word from the context
words. The skip-gram model learns to predict the context
words from the target word. Word2Vec neural network has
only one hidden layer, and word representations are extracted
from that layer.

Deps [26] exploits dependency parse trees. Deps model
generalizes skip-gram to include arbitrary contexts and uses
dependency-based contexts derived from parse trees.

GloVe [27] directly captures global corpus statistics through
unsupervised learning. GloVe combines global matrix factor-
ization and local context window methods through a bilinear
regression model. By doing so it learns from the co-occurrence
matrix and trains word representations in a way that it can
predict co-occurrence ratios. An example was given in [27].
Let i = ice and j = steam, if k = solid, we expect the
ratio Pik/Pjk to be large (Pxy is probability of words x and y
to occur together). If k = gas, the ratio should be small. For
words that are related to both ice and steam, or to neither, the
ratio should be closer to 1. This is used instead of raw prob-
abilities because with ratios we can more easily distinguish
relevant words from irrelevant words. Mathematically GloVe
is similar to Word2Vec [50].

Doc2Vec [37] is an extension of Word2Vec that can learn
representations for documents (or smaller parts of texts). While
predicting context words of a target word, Doc2Vec receives
on input the target word and the document ID. Through

learning, it learns not only representations for words, but
documents as well.

FastText [23] is an unsupervised model that learns repre-
sentations for character n-grams, and each word is represented
as a bag-of-character n-grams. Previous models were limited
to assigning a distinct vector to each word. Representations on
the subword level are shown to be better for morphologically
richer languages and for rare words.

D. Convolutional Models

Convolutional architectures are widely used for computer
vision tasks. CNNs by their nature learn to abstract input data
through multiple levels and detect patterns on each level.

The model introduced in [12] used a single convolutional
neural network architecture that, given a sentence on input,
outputs part-of-speech tags, chunks, named entity tags, seman-
tic roles, semantically similar words, and the likelihood that
the sentence makes sense. All of these tasks are trained jointly.
The language model is learned through unsupervised learning,
while the other tasks are learned through supervised learning.
While learning, all the tasks share weights. When the neural
network is trained, word representations can be extracted from
it.

CharSCNN [20] (Character to Sentence Convolutional
Neural Network) is a supervised deep convolutional neural
network that exploits from character-level to sentence-level
information to perform sentiment analysis of texts. Represen-
tations can be extracted from each level: character, word, and
sentence.

CharWNN [21] is a supervised model that is trained on
part-of-speech tags. It learns character-level representations
that can then be used to detect word morphology.

The model proposed in [28] is a supervised triplet network
model, which aims to learn useful representations by distance
comparisons. The network learns word representations by
predicting which two of the three words received on input
are in the same class.

CharCNN [22] (character-level Convolutional Neural Net-
work) is an unsupervised model that relies only on character-
level inputs. It uses CNN and LSTM. Except for the character
representations, word representations can be extracted from
the network as well.

ConvRR [30] (convolutional Residual Retrieval network)
proposed a new unsupervised method (based on CNN) to gen-
erate multi-resolution word representations. Multi-resolution
means that multiple word representations are combined in the
network to take advantage of the strengths of each of the word
embedding methods.

E. Recurrent Models

Recurrent neural networks process input as a sequence and
learned representations preserve ordered knowledge about a
text. Such networks are well suited for sentences or phrases.
While tokens from the input sequence are processed, the
history of all the previous tokens is preserved as a state in
the neurons. Normal RNNs (recurrent neural network) have a



vanishing (and exploding) gradient problem where with longer
texts the network forgets about the older inputs [51]. The
vanishing gradient problem is solved by GRUs (gated recurrent
unit) and LSTMs (long short term memory).

A supervised encoder-decoder model in [38] uses two
RNNs. One network encodes a sequence of symbols into a
representation vector, and the other decodes the representation
into another sequence of symbols. The sequence of symbols
can be a phrase or a sentence.

Seq2Seq [14] is a supervised recurrent neural network
model. More specifically, it uses LSTM units in recurrent
layers. Seq2Seq transforms the input sequence into the output
sequence, and it is trained on a machine translation task. This
model can produce representations for phrases and sentences.
With the help of LSTM units, this network performs better on
longer sequences than RNN models.

Skip-Thoughts [39] is an unsupervised encoder-decoder
model that learns to reconstruct the surrounding sentences of
an encoded sentence. They use encoder with GRU activations
and an RNN decoder with a conditional GRU. Skip-Thoughts
learns representations for sentences and performs equally as
the LSTM approach.

RCNN [40] (Recurrent Convolutional Neural Network) is
a supervised bidirectional RNN (BiRNN) with a pooling layer
after the BiRNN layer. Sentence representations are learned
through the BiRNN, which scans over texts in both directions,
while normal RNNs scan texts only in one direction. The
pooling layer learns to select the most important words for
a text classification task.

ELMo [29] (Embeddings from Language Models) is an
unsupervised model that uses bidirectional LSTM (BiLSTM).
This model solves a word representation problem where in
previous models (e.g. Word2Vec) each word has one repre-
sentation vector, but each word can have a different meaning
in different contexts (polysemy). ELMos word representations
are learned functions of the internal states of the BiLSTM. In
different contexts, the same word has different representation
vectors.

A semi-supervised model in [47] uses bidirectional GRU
(BiGRU) for sentence representation multi-task learning. Tasks
that the model is trained on are skip-thought, machine trans-
lation, constituency parsing, and natural language inference.

GLoMo [48] (Graphs from Low-level unit Modeling) is an
unsupervised model with a complex architecture for learning
generic latent relational graphs that captures dependencies
between pairs of data units (e.g. words). Those graph rep-
resentations are used as sentence representations. The model
architecture consists of RNN, CNN, and Attention.

F. Recursive Models

Recurrent models learn representations with ordered infor-
mation, but recursive neural networks go one step further
and learn structured information. Recursive networks process
inputs in recursive fashion through a tree structure. Each node
in that tree structure has associated with it a representation.
Those trees can be given on input, learned from annotated

texts, or generated by a neural network without learning tree
structures (latent trees).

A supervised model in [31] learns to parse sentences (create
parse trees). While learning how to parse sentences, this model
learns text representation as well.

Authors introduced in [32] a supervised structure prediction
model that can recover recursive structures in the inputs of
natural scene images or natural language sentences. While
learning text structure, it learns text representation.

RAE [33] (Recursive Autoencoders) introduced an archi-
tecture based on recursive autoencoders for sentence-level
prediction of sentiment label distributions. While this model
can learn text representation through supervised learning of
sentiment distributions, it can learn text representation through
unsupervised learning as well. Parsing trees are latent, mean-
ing that they are not learned or given on input, but generated
by concatenating neighboring pairs of words or phrases and
combining the ones with the lowest reconstruction error (in
autoencoder) into parent nodes.

MV-RNN [34] (Recursive Matrix-Vector Model) introduced
a model that learns vector and matrix representations for
every node in the tree (phrases and sentences). The vector
captures the meaning of the node, while the matrix captures
how it changes the meaning of neighboring words or phrases.
Supervised training of the model is done by adding on top of
each parent node a softmax classifier. The model uses given
parse trees.

Some other supervised recursive models that work on given
parse trees are RNTN [16], [36], Tree-LSTM [41] and TBCNN
[42].

Models cimRNN and csmRNN [35] learn word representa-
tions through unsupervised training with the help of morpheme
trees, while all the other recursive neural networks in this
overview learn sentence+ representations.

Tree-LSTM [41] introduced a generalisation of LSTM to
tree-structured network topologies. The model is trained on a
sentiment task.

SPINN [43] (Stack augmented Parser-Interpreter Neural
Network) introduced a model architecture (SPINN-PI-NT) that
is equivalent to the Tree-LSTM model. Text representation and
tree structures are learned through supervised training.

RL-SPINN [44] uses reinforcement learning to learn sen-
tence representations. RL-SPINNs architecture is based on the
SPINN model. Parsing trees it uses are latent, meaning that
the tree structures are not learned or given on input, but are
optimized for the downstream task.

ST-Gumbel [45] (Straight-Through Gumbel-Softmax es-
timator) is based on the Tree-LSTM model. It uses latent
trees that are computed with a composition query vector that
measures the validity of a composition. Text representation is
learned through unsupervised training.

G. Attention Models

Most of the sequence translation models use recurrent or
convolutional neural networks with an encoder and a decoder.
Some also connect the encoder and decoder through an



attention mechanism. Transformer [52] is a neural network
architecture based only on attention mechanisms, without
using recurrent or convolutional layers.

GPT-2 [24] (Generative Pretrained Transformer 2) is a
Transformer that through unsupervised training learns byte
sequence representations. The main task of this model is
language modeling.

BERT [17] (Bidirectional Encoder Representations from
Transformers) is deep bidirectional Transformer. Deep bidirec-
tional means that it is conditioned on every word in the left
and right contexts at the same time. It does so by masking
some percentage of the input tokens at random and then
predicts those masked tokens. BERT is an unsupervised model
(language model) that learns sentence representations.

H. Multimodal Models

Multimodal models learn from at least two different sources
of information, in models mentioned bellow, those sources are
text and images. This is done to create text representations
that are more ”knowledgeable” about the concepts that are
associated with the words. For example, if learning text
representations with the help of images, those representations
can learn the semantics of objects (e.g. by seeing wheels on
cars it can create representations that reflect that knowledge).

The model introduced in [25] creates word representations
by concatenating Word2Vec word representation vectors with
image representation vectors extracted from CNN trained on
labeled object recognition dataset.

The model introduced in [18] uses stacked autoencoders
to learn word representations from textual and visual input.
Model is semi-supervised even though autoencoders are used,
which are by their nature unsupervised. Model is not com-
pletely unsupervised because pairs of words and images have
to be paired correctly for the model to learn correct meaningful
representations.

A supervised model in [46] is trained by encoding sentences
to predict image features. The model uses BiLSTM and CNN
(ResNet).

A model in [49] is trained on the task of visual question
answering, where questions are asked about images. The
model uses CNN for learning text representations.

I. Evaluation Methods

The quality of the learned representation space has to be
somehow evaluated. The evaluations are done indirectly on
different tasks, and each task can provide one perspective
about the representation space quality. Those tasks range from
simpler ones to more complex ones.

Word/sentece similarity task is widely used, but is too
simple to be able to test better representations (even shallow
text representations perform good on such tasks) (Word2Vec
[8, 9], Deps [26], GloVe [27], FastText [23], Skip-Thoughts
[39], cimRNN and csmRNN [35], RL-SPINN [44]). The most
used evaluation measure for the similarity task are Spearman
and sometimes Pearson correlations.

Word analogy task can be used as well, and can tell us the
representation space structure quality (GloVe [27], FastText
[23]). The most used evaluation measure for the word analogy
task is accuracy.

Sentiment classification task can provide more informa-
tion about the sentence representation quality (Doc2Vec [37],
CharSCNN [20], RAE [33], MV-RNN [34], RNTN [16], [36],
Tree-LSTM [41], TBCNN [42]). The most used evaluation
measure for the sentiment classification task is accuracy.

Translation task is able to inform us about the sentence en-
coding quality ( [38], Seq2Seq [14]). The most used evaluation
measure for the translation task is BLEU score.

Representations that perform well at question answering
tasks preserve knowledge and understanding of text semantics
(ELMo [29]). The most used evaluation measure for the
question answering task is the F1 score.

Inference task is able of high quality evaluation as well
(SPINN [43], ST-Gumbel [45]). The most used evaluation
measure for the inference task is accuracy.

IV. PRELIMINARY RESULTS

This section describes preliminary results for word represen-
tation comparison and sentence similarity methods with word
representations (that uses external knowledge). We perform
those two experiments with shallow representations.

In the first preliminary experiment, we compare four word
representation models on the analogy task (Table III). FastText
proved to be very fast to train, and it is performing better
than other models. Other models produced worse results
because the data we trained all the models on was small, and
FastText learned the most out of it because it is trained on the
subword level. When training on the subword level, the tokens
are repeated trough the training process more frequently,
effectively providing the model with more training examples.
The differences in results categorized by analogy themes
between Word2Vec, GloVe, and ELMo could possibly provide
information about deeper differences of the models. ELMo
performed very poorly because when producing representation
for a word the model should take into consideration the context
of that word, but in our evaluation, there were no contexts.

In the second preliminary experiment [53], we explore the
results obtained with two publicly available pre-trained word
embeddings (one based on Word2Vec trained on a specific
dataset and the second extending it with embeddings of
word senses). We test five approaches for aggregating words
into text (Tables IV and V). Two approaches are based on
centroids and summarize a text as a word embedding. The
other approaches are some variations of the Okapi BM25
function and provide directly a measure of the similarity of
two texts.

To better understand the nature of the training process of
neural networks, in previous work we created visualization
methods that visualize the change of the weights through the
time of the learning process [54].

The conclusion was that for richer text representation better
methods have to be used. Methods like Word2Vec are shallow,



so more complex methods that use the structure of the text to
learn representations are needed to create better representa-
tions.

TABLE III
ACCURACIES ON ANALOGY TASK BY CATEGORY FOR EACH METHOD

Word2Vec GloVe FastText ELMo
capital-common-countries 0% 30.8% 66% 3.4%
capital-world 0% 5.4% 20.4% 1.7%
currency 0.1% 0% 1.7% 0.3%
city-in-state 0% 19% 15.6% 7%
family 57.1% 29.2% 42.5% 23.5%
gram1-adjective-to-adverb 8.7% 0.6% 59.4% 1.8%
gram2-opposite 9.1% 0% 50.2% 3.8%
gram3-comparative 58.1% 6% 64% 8.5%
gram4-superlative 19.3% 1% 49.8% 3.1%
gram5-present-participle 39.8% 8.7% 51.7% 7.8%
gram6-nationality-adjective 0% 17.9% 79.8% 5%
gram7-past-tense 45% 14.2% 43.5% 11.6%
gram8-plural 36.1% 7% 62.5% 1.8%
gram9-plural-verbs 39% 5.3% 64.9% 10.2%

TABLE IV
PEARSON (r) AND SPEARMAN (ρ) CORRELATIONS OF FIVE SIMILARITY

MEASURES FOR Word2Vec (A1) AND NASARI+Word2Vec (A2) APPROACHES
FOR THE SICK DATASET.

r (a1) ρ (a1) r (a2) ρ (a2)
simcos 0.642 0.585 0.586 0.557
simcos2 0.661 0.579 0.604 0.550
sts 0.503 0.468 0.470 0.443
stss 0.565 0.534 0.549 0.516
stss2 0.642 0.537 0.612 0.520

TABLE V
PEARSON (r) AND SPEARMAN (ρ) CORRELATIONS OF FIVE SIMILARITY

MEASURES FOR Word2Vec (A1) AND NASARI+Word2Vec (A2) APPROACHES
FOR THE Lee DATASET.

r (a1) ρ (a1) r (a2) ρ (a2)
simcos 0.582 0.519 0.472 0.464
simcos2 0.589 0.519 0.502 0.478
sts 0.283 0.193 0.276 0.225
stss 0.474 0.293 0.500 0.406
stss2 0.424 0.288 0.444 0.378

V. FUTURE WORK

Text representation is very important for NLP, and there
is much room for improvement. For future work, we could
create a new neural text representation model, a new learning
method, or improve an existing model or a method.

A. Recursive Text Representation

A recursive neural network that processes text in a tree-
structured way seems promising. One approach that could
perform well is a recursive neural network that learns multi-
word and sentence representations by encoding neighboring
pairs of nodes (nodes present words or sequences of words)
and predicting words to the left and to the right of that

node. The method could be explained as a recursive skip-
gram model. RAE [33] is similar, but instead of predicting
neighboring words it is encoding and then decoding the input
nodes.

The trees in the new model could be latent, by combining
the nodes that best predict the neighboring words. That would
be a greedy approach, a more precise approach (and more
computationally expansive one) would search for tree struc-
tures that in total make the best predictions for the neighbors
for all the nodes.

When evaluating the new model, the results could be
compared with the RAE model and some other state of the
art recursive models.

B. Online Representation Learning

Text representation could be improved without changing the
neural network architecture of existing models. One possible
approach is to modify learning algorithms so that instead of
using one-hot vectors or other pretrained text representations
as input, the representation being learned currently in the
model could be used as the input while the representation is
being learned.

In each iteration, new representations for text can be cal-
culated by multiplying the old representation (input vector)
and the hidden representation (representation layer). New
representations are then used in the next iteration as the input
vector. This approach is almost certainly very unstable.

Another approach that is possibly more stable calculates
new input representations every n iterations. Giving some time
for the neural network to stabilize.

Evaluation is very direct and simple, the performance of the
improved model is directly comparable with the base model.

VI. CONCLUSION AND DISCUSSION

There is a lot of approaches to learning text representations
to choose from. From shallower models that are good at
simple tasks to more complex models that care about order
and structure. For text processing, text representation is the
first and the most important step. As such the quality of
representations has a high influence on the performance on
the downstream tasks.

Shallow models are fast to train and perform well enough
on simple tasks (e.g., similarity) on subword and word level.

Recurrent models perform well, and in contrast to recursive
models, they do not need additional data (trees) to parse
sentences. Recursive models are promising, and latent tree
generation can bypass the need for additional data.

Recurrent and attention models are well suited for text
generation, while recursive models perform very well for
sentiment classification. Convolutional models work well with
multimodal learning (in the case when the other source of
training data is images).

Regarding the representation levels, the conclusion is that
subword representations work better with languages with rich
morphology, and out-of-vocabulary words are less of a prob-
lem. Both recurrent and recursive models can learn subword



representations. Word representations are suitable when out-
of-vocabulary words are infrequent and the morphology of the
language is not complex. For phrase, sentence, and document
representations, models that learn sentence+ representation are
the best choice.
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