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Abstract 





  Qualitative modeling and simulation make it feasible to predict the possible behaviors of a system consistent with an incomplete state of knowledge. However, any given set of qualitative constraints may not be sufficiently powerful to filter out all inconsistent behaviors - spurious behaviors. Spurious behaviors pose a significant  efficiency problem for applications of Qualitative Simulation. 


The creation of a suitable set of global filters on complete qualitative states or behaviors has been an ongoing line of research: reasoning with infinite values and infinite times, reasoning with higher-order derivatives, ignoring direction of change, reasoning in the phase space representation and reasoning about energy. Beside these standard qualitative techniques there is a completely new method using  temporal constraints on trajectories presented by Brajnik and Clancy. Concluding this overview I give also my own approach to the problem using combination of qualitative and numerical simulation.








1.   Introduction





Qualitative reasoning about physical systems has become one of the most active and productive areas in artificial intelligence in recent years. The one of the most important kind of qualitative reasoning is qualitative simulation: prediction of the possible behaviors consistent with incomplete knowledge of the structure of physical system [5].


 Limitations of the Kuipers' QSIM algorithm [3] came from attempting to do a qualitative simulation of the simple undamped oscillator: x''= (M+(x) (figure 1). At the end of the first complete cycle, the simulation branches three ways according to whether the oscillation was increasing, steady, or decreasing, although only the steady case is consistent with this equation [5].


	There are several techniques used in filtering  out unreal behaviors and their short description is given in the third section of this paper.


Beside these techniques there is a new one presented by Brajnik and Clancy in [6]. They present a new method for specifying temporal constraints on trajectories of dynamical systems and enforcing them during qualitative simulation. Such constraints are otherwise inexpressible using standard qualitative reasoning techniques. The method has been implemented in TeQSIM, a qualitative simulator. It combines the expressive power of qualitatively differential equations with temporal logic by interleaving temporal logic model checking with the simulation to constrain and refine the resulting predicted behaviors and to inject discontinuous changes into the simulation.


Result of my research in constraining QSIM is program MARK which is presented in [8], [9] and [10]. Its' kernel  is "intelligent" numerical simulation algorithm which is implemented in improving QSIM predicting method.
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Figure 1:  The Spring-Block System











2.   Qualitative simulation overview





The QSIM algorithm [3] performs qualitative simulation based on qualitative differential equations (QDE) and generates symbolic behavior of the system. 


Qualitative simulation is based on observations that:


( the domain of a variable representing a physical parameter of a system can often be partitioned into a small number of "landmark" points and intervals between them, which represent qualitatively distinct values of the variable;


( knowing the direction of change of a variable, in conjunction with its qualitative magnitude, is often enough to determine the qualitative properties of its evolution;


and


( for determining the qualitative behavior of a system, it is often adequate to know a functional relationship between two variables down to monotonicity and corresponding pairs of landmark values.


	QSIM, based on the above ideas, is a simulation algorithm for deriving the possible qualitative behaviors of a system from its qualitative model in terms of QDEs. A qualitative model of a system consists of the variables that describe the system at a given level of abstraction, and the constraints that hold among the variables. Variables are continuously differentiable functions of time. The next step is to identify the landmarks. They are used to describe the qualitative magnitude (QMAG) of a variable, which is either a landmark, or an interval between two adjacent landmarks. The totally ordered set of all the possible QMAGs of a variable is called its quantity space. A variable is not only qualitatively described by its QMAG but also by its direction of change (QDIR), which can be either decreasing, steady or increasing. The pair (QMAG, QDIR) is called the qualitative value (QVAL) of a variable. The set of QVALs of all the system variables is the qualitative state of the system.


	The set of all possible states of a system is restricted by relations between variables, called constraints. Constraints may model arithmetic relationships like add(X,Y,Z), mult(X,Y,Z), or minus(X,Y), differential relationships like deriv(X,Y), or functional relationships like M+(X,Y). The last constraint represents a very important class of functional relationships and states that some monotonically increasing function exists between X and Y. The set of all the variables with their associated quantity spaces and the set of all the constraints form a qualitative differential equation or a QDE. The range of variables for which a QDE is valid is called an operating region. Functions describing how a system behaves when it goes out of some operating region are called region transitions.


	Given a qualitative description of a system in terms of variables and constraints, QSIM starts from an initial state compatible with the QDE and determines the possible state(s) of the system during the interval of time immediately after the initial time point. It then determines the possible changes of every variable that will lead to a qualitatively distinct state, defining a new time point t1. This process is called limit analysis. Possible changes are a variable reaching or moving from a landmark value or a variable changing its direction of change. If several possibilities are compatible with the constraints then QSIM will branch on every possibility. This potential for a branching sequence of events is an important difference between qualitative and numerical simulation. QSIM reapplies this process to every newly created state and the result is a tree of possible behaviors.


	Qualitative modeling and simulation make it feasible to predict the possible behaviors of a system consistent with an incomplete state of knowledge [7]. Qualitative simulation is guaranteed to predict all real behaviors of a system consistent with the model. However, any given set of qualitative constraints may not be sufficiently powerful to filter out all inconsistent behaviors. Such remaining behaviors, which correspond to no solution of any ordinary differential equation consistent with the qualitative model, are called spurious behaviors. Spurious behaviors pose a significant efficiency problem for applications of qualitative simulation. 








3.   Filtering  techniques





	Kuipers in [5] gives an overview of the filtering architectures of the QSIM algorithm, which are presented in more details in [1] and [4] with the results of the simulation for the simple oscillator. These filters are described in two groups as follows.





3.1.  State-based filters





1) Infinite values and infinite times: The QSIM abstraction is defined over the extended number line, so these values are represented by landmark values in each quantity space. There are useful constraints on the possible combinations of finite and infinite values, times and rates of change.





2) Higher-order derivatives: Certain unconstrained or "chattering" sets of qualitative behaviors can be pruned by deriving and applying expressions for higher-order derivatives of key variables in the QDE.





3) Ignoring direction of change: Chattering behaviors can also be collapsed into a single description without an additional assumption by ignoring certain qualitative features, at the cost of additional possible spurious behaviors.





3.2. History-based filters





1) Non-intersection of trajectories in qualitative phase space: The solution to a differential equation can be viewed as a trajectory in phase space. These trajectories cannot intersect themselves or each other at finite times. 





2) Kinetic energy theorem: A QDE (qualitative differential equation) can be viewed as representing motion in response to a force, which in turn can be decomposed into a conservative and a non-conservative component. Then, over any segment of behavior, the change in kinetic energy of the system must be equal to the sum of conservative and non-conservative work. This equation can often be evaluated qualitatively, and eliminates an important source of spurious behaviors.


	Tables 1 and 2 summarize the results of applying some of these different techniques to the simple and damped springs [1]. Figures in bold type-face indicate that the number of behavior is correct .














Simple Spring�
t4�
t8�
�
QSIM Kernel�
3�
26�
�
Non-intersection Constraint�
3�
7�
�
Energy Constraint�
1�
-�
�



Table 1: Simulation results for the simple spring





Damped Spring�
t4�
t7�
t10�
�
QSIM Kernel�
56�
Too many�
Too many�
�
Higher-Order Derivatives�
4�
60�
Too many�
�
Ignore Qdir�
2�
7�
50�
�
Ignore Qdir and Non-Intersection Constraint�
2�
5�
15�
�
Ignore Qdir and Energy Constraint�
2�
3�
4�
�



Table 2: Simulation results for the damped spring 








4. Temporal constraints on trajectories in qualitative simulation





	State space equations that constrain the values of related variables within individual states are often used in models of continuous dynamical systems such as ordinary differential equations [6]. These models do not allow the representation of non-local information constraining the behavior of the system across time except through the application of continuity.
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Qualitative simulation uses an abstraction of ordinary differential equations to specify structural equations based on a state space description. The discretization of trajectories into abstract qualitative states, however, makes the representation used by qualitatively simulation amenable to the application of temporal formalisms to specify non-local trajectory constraints. In general, trajectory information can be used to restrict the simulation to a region of the state space. This capability can be used to focus the simulation for larger, more complex simulations, simulate non-autonomous systems, reason about boundary condition problems and incorporate observations into the simulation.


	TeQSIM (Temporally Constrained QSIM, pronounced tek'sim) allows the modeler to specify both continuous and discontinuous behavioral information via trajectory constraints that restrict the simulation [6].


	Qualitative simulation uses a discretization of a continuous real valued trajectory space into qualitative states to represent a set of behaviors consistent with the structural constraints included in the qualitative differential equation (QDE) and continuity constraints applied during the simulation. Each qualitative behavior corresponds to a set of real-valued trajectories. Trajectory information can be used to further constrain the qualitative simulation and reduce ambiguity within the behavioral description.








5. "Intelligent" numerical simulation





		In [8], [9] and [10] I present a Prolog program MARK (figure 4), I developed, for parameter estimation in the simulation of ecological systems. The program combines a numerical and a qualitative simulator and was tested on a number of simple ecological models. 


	“Intelligent” sampling algorithm is used to search for at least one coefficient combination for every qualitative behavior QSIM has predicted.  Behavior tree is obtain as the result of qualitative simulation with  Prolog program SI2LOGIC [2], based on the QSIM kernel algorithm. It is desirable that algorithm marks all real behavior tree branches (figure 2). In that way the algorithm improves QSIM behavior predicting method. 


	Marking the QSIM qualitative behavior tree for given QDE model and initial state, has reduced the behavior tree. Only really possible behaviors are retained. These are marked by a corresponding combination of parameter values. As a test model an ecosystem with feedback  has been used (figure 3), and the results are given in table 3. For each tree level the value in first column represents the number of total system states predicted by QSIM and the value in the second column represents marked system states at that level. Because of computational complexity, test is completed only for Depth=3.
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Figure 2: Marked QSIM behavior tree








Figure 3:  Conceptual diagram of an ecosystem with feedback





	In order to obtain more precise results (not to skip real behaviors), coefficient values are varied in small enough steps, dependent on coefficient sensitivity (obtained earlier by hypothesis test). Because of computational complexity and overflow problems coefficients change their value in rather narrow intervals.


	Experts could benefit from marked tree noticing rules that govern the relationships between the coefficients.








Tree level�
Number of system states predicted by QSIM�
Number of system states marked as real�
�
0�
1�
1�
�
1�
1�
1�
�
2�
1�
1�
�
3�
2�
1�
�
Table 3: Real and spurious states at tree levels for an ecosystem with feedback








6. Conclusions





	With the help of descrabed filtering techniques QSIM is now able to simulate systems that were previously intractable. Still qualitative simulation is not used often by applications  in real-world problems. One reason for this is the difficulty encountered when developing a qualitative model. 


Main problems in my attempt to improve QSIM behavior predicting method were computational complexity and accuracy of the "intelligent" numerical simulation algorithm. For less complex models MARK gives results in real-time, so in these cases it is more suitable for practical use. The source of the complexity problem is also the huge QSIM behavior tree, so I'm already  modifying my approach to the problem.








References





P. Fouche and B. J. Kuipers. An Assesment of Current     Qualitative Simulation Techniques. Recent Advances in Qualitative Physics, P. Struss and B. Faltings, Eds Cambridge, MA, MIT Press, 1991.





I. Bratko, S. Muggleton and A. Var{ek. Learning Qualitative Models Of Dynamic System.  Inductive Logic Programming, S. Muggleton, editor, Academic Press, p. 437, 1992.





 B. J. Kuipers. Qualitative simulation.  Artificial Intelligence, vol. 29, p. 289, 1986.





P. Fouche and B. J. Kuipers. Reasoning About Energy in Qualitative Simulation. IEEE Transactions On Systems, Man, and Cybernetics, Vol. 22, No.1, 1992.





B. J. Kuipers. Qualitative simulation: then and now. Artificial Intelligence , vol. 59, p. 133, 1993.





 G. Brajnik and D. J. Clancy. Temporal Constraints on Trajectories in Qualitative Simulation. In Proc. 10th International Workshop on Qualitative Reasoning About Physical Systems, Fallen Leaf Lake, CA, USA, p. 22, 1996.





B. J. Kuipers. Reasoning with qualitative models. Artificial Intelligence , vol. 59, p. 125, 1993.





M. Mateti}. Explaining dynamic systems by combining numerical and qualitative simulation, M.Sc. Thesis, Faculty of Electrical Engineering and Computer Science, Ljubljana, 1995.





 M.Mateti}. Explaining dynamic systems by combining qualitative and numerical simulation.  Proceedings of the Fourth Electrotechnical and Computer Science Conference, ERK’95, Portoro`, Slovenija, p. 153, 1995.





 M. Mateti}. MARK - A Simulation System for Parameter Estimation in Simulation of Ecological Processes. The 12th International Conference on Case Method Research and Case Method Application: Environmental Problem Solving - From Cases and Experiments to Concepts, Knowledge, Tools and Motivations, Maribor , Slovenia, 1995.





�
�





�



Figure 4: The structure of a simulator system MARK


